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Abstract

This dissertation investigates novel methods and tools that employ Al to address the
gaps between domain expertise and technical implementation, allowing both domain

professionals and end users to effectively create and customize interactive systems.

Domain professionals face distinct obstacles based on their expertise areas. Web
designers, for instance, struggle with the translation gap between visual concepts and
functional implementation, leading to compromised designs, extended development
cycles, and frustrating miscommunications between design and development teams.
We address these challenges by developing design-to-code translation systems that
automatically convert visual mockups into functional code while allowing designers

to explore stylistic elements and control interactive behaviors.

Educators encounter a distinct set of barriers when creating digital learning
environments. Despite possessing deep pedagogical knowledge, they typically lack
the technical skills to implement effective instructional interfaces without developer
assistance. We introduce a generative Al-based system that transforms teaching
requirements directly into interactive interfaces, maintaining educator control over

educational design while automating technical implementation.

For end users, we focus on individuals seeking to create websites which face a
fundamental barrier in the programming knowledge required for development. They
must either invest significant time learning technical skills or accept the creative
limitations of template-based solutions. We propose a language interface creation
algorithm that enable conversational website design and modification without coding

expertise, and a tool for customization to user preferences.

Lastly, this dissertation focuses on smart home inhabitants and the encountered
friction when their environments fail to understand natural communication patterns,

forcing them to adapt to rigid command structures rather than systems adapting to



iv

users, we introduce a multimodal disambiguation system that combine visual and

textual cues to clarify user intentions, creating more intuitive interaction experiences.

Through user studies and technical evaluations across web interfaces, intelligent
tutoring systems, and smart home environments, results show that designing Al
collaboration systems which allow humans to effectively express their intentions and
aligning the Al realization with these expressions, leads to significant improvements

in user satisfaction, efficiency, and output quality compared to traditional systems.
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Chapter 1

Introduction

1.1 Context

According to the European Commission’s Digital Economy and Society Index [1],
90% of jobs across all sectors require at least some level of digital skills, indicating
widespread computer use in the workplace. While most people have now become
familiar with basic computer functionality and interfaces, developing new appli-
cations or modifying existing ones to effectively support user goals still demands
programming expertise that remains beyond the reach of the average user. In fact,

computer programmers constitute about 0.96% of the total workforce [2].

Enhancing user participation in the initial design of systems addresses only part
of the challenge, as user requirements remain diversified, constantly evolving, and
often difficult to precisely identify. A more comprehensive approach is enabling
users themselves to continuously adapt the systems to their needs. The research
area pursuing this goal is called End-User Development, defined as “a set of meth-
ods, techniques, and tools that allow users of software systems, who are acting
as non-professional software developers, at some point to create, modify, or ex-
tend a software artifact.” [3] Traditional EUD systems relied on techniques such
as programming by example (also called programming by demonstration), visual
programming, macros, and scripting languages. Recently, the rapid emergence of
generative Al technologies is creating a new horizon for empowering end users
to actively create and adapt interactive systems. These new model can produce

executable code and user-facing behaviors from naturalistic human descriptions.
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Rather than relying on formal syntax or domain-specific notations, users can now
issue prompts in everyday language (e.g., “Generate a custom web-based quiz with
adaptive questions based on user performance”) and obtain functional code stubs
or fully formed applications. This amplification of end-user agency draws on a
longstanding EUD theme: lowering or altogether removing the barriers imposed by

traditional programming environments.

This shift, sometimes referred to as the “generative turn” in end-user develop-
ment [4], may encourage faster experimentation with software features and richer

adaptation of interactive systems.

Compared to conventional methods in end-user development, generative Al offers
a lower threshold but also requires new forms of guidance. Where previous end-user
development approaches focused on macros, scripting environments, and visual pro-
gramming, generative Al extends these possibilities by letting users fluidly express
their goals and instructions in terms familiar to them, which are then translated into
software artifacts. However, end users are only providing prompts and passively
accepting whatever result emerges, they may confront situations where subtle errors,
incomplete requirements, or security vulnerabilities become difficult to diagnose.
These implications underscore the importance of hybrid design strategies that weave
together the fluid expressiveness of generative Al with the predictable scaffolding
of more conventional EUD methods such as visual layouts, parameter menus, or
constrained domain notations. In this way, generative Al technologies complement
the EUD vision by promising more ambitious, highly customized applications that

better capture the user’s changing needs.

We can identify two types of end-user activities from a user-centered design

perspective:

1. Parameterization or customization. Activities that allow users to choose
among alternative behaviors (or presentations or interaction mechanisms)
already available in the application. Adaptive systems are those where the
customization happens automatically by the system in reaction to observation

the user’s behavior.

2. Program creation and modification. Activities that imply some modifi-

cation, aiming at creating from scratch or modifying an existing software
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artifact. Examples of these approaches are: programming by example, visual

programming, macros, and scripting languages.

This dissertation investigates novel Al techniques to bridge the gap between
users’ intentions and technical implementation. Specifically, it focuses on enabling
both creation and customization capabilities across three domains: web interfaces,
intelligent tutoring systems, and smart home environments. For web interfaces, the
research targets professional designers needing to rapidly prototype visual concepts
and end users wanting to create custom websites. In intelligent tutoring systems, it
addresses educators’ needs to develop effective learning environments. For smart
homes, the work focuses on enabling everyday users to personalize their spaces

through intuitive interactions.

These works span a period (circa 2021-2025) of extraordinary change in machine—
learning capabilities. The earliest investigations (Chapters 2 and 3) were carried out
when heuristic pipelines and recurrent models such as LSTMs still constituted the
most reliable option for Ul translation or domain reasoning. Beginning in 2022, the
public availability of large transformer-based models (e.g. the GPT family) unlocked
entirely new possibilities for interface generation and natural-language reasoning.
The later chapters (4 and 5) therefore build directly on these large language models,
while Chapter 6 reflects on the broader implications of this transition. Where relevant,
each chapter explicitly acknowledges the technological constraints that shaped the
chosen methods at the time of experimentation, thereby highlighting the progressive
incorporation of generative Al throughout the thesis.

1.2 Background

Creating and customizing interactive systems remains challenging for many users,
despite advances in digital technologies. Significant technical barriers persist, partic-
ularly among domain experts without programming backgrounds and everyday users
seeking to personalize their digital experiences. These barriers limit the democratiza-
tion of digital tools and prevent many potential users from creating solutions tailored
to their specific needs. This dissertation investigates three application areas where
these barriers emerge most prominently: (i) web development, where professional

designers face a translation gap between visual concepts and functional implementa-
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tion and end users struggle with the technical complexity of website creation and
customization; (ii) intelligent tutoring systems, where educators struggle to transform
their pedagogical knowledge into effective digital learning environments; and (iii)
smart home technologies, where everyday users encounter rigid interaction models

that fail to accommodate natural communication patterns.

1.2.1 Accelerating and Democratizing Web Development

The process of creating and customizing web interfaces presents distinct challenges
for professional designers in their workflow and end users wanting to build web

systems for their businesses or personal needs.

Professional designers possess skills in layout, aesthetics, and user experience
but commonly lack the programming background necessary to rapidly prototype
fully interactive interfaces. This technical gap creates a significant bottleneck in
the web development workflow. Designers spend considerable time creating visual
mock-ups and prototypes, only to wait for developers to translate these designs
into functional code—a process that introduces delays, miscommunications, and

deviations from the original design intent [5, 6].

Existing methods for translating sketches or mock-ups into code—be they
heuristic-based [7] or end-to-end approaches [8, 9]—are constrained by signifi-
cant limitations. Heuristic-based systems struggle with novel or unconventional
design elements, as they rely on predefined rules that cannot account for creative
variations [10]. Meanwhile, end-to-end deep learning approaches suffer from lim-
ited training datasets that fail to represent the complexities of real-world design

scenarios [11].

In addition, designer needs have not been adequately taken into account in tradi-
tional design-to-code systems. Designers cannot easily incorporate style variations
(e.g., color schemes and typography) into generated code [8], as current systems
typically produce generic visual styles rather than preserving the designer’s aesthetic
choices. Similarly, they struggle to embed dynamic behaviors (e.g., hyperlinks,
dropdown menus) without reverting to manual development [12, 13]. This forces
designers to either simplify their designs or spend additional time implementing

interactive elements manually.
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End users face different but equally significant barriers when attempting to create
or customize web interfaces. Traditional website development requires technical
knowledge that poses a substantial barrier for these individuals [14, 15]. While
low-code/no-code tools have emerged as alternatives, they often present their own
challenges, including limited flexibility for complex interfaces and steep learning
curves [16, 17].

Current customization approaches often restrict end users to predefined op-
tions [18] or require mastery of complex configuration languages [19], frequently
falling short in capturing users’ genuine adaptation requirements and mental mod-
els [20]. When interfaces do not align with individual needs—which vary signifi-
cantly based on context, preferences, and abilities [21, 22]—the result is suboptimal

user experiences that fail to accommodate diversity.

Natural language interfaces offer a promising alternative for these users, allowing
them to express their requirements without technical terminology. However, existing
systems like Stylette [23] encounter difficulties with ambiguous specifications and
are limited to styling adjustments through fixed sets of attributes. They typically
do not support functional modifications or the creation of new interface compo-
nents, significantly constraining what end users can achieve without programming

knowledge.

In this context, there is a pressing need for advanced generative approaches that
address the distinct needs of both designers and end users: systems that can automati-
cally translate visual designs into functional code while preserving style and behavior
for designers, and systems that enable intuitive creation and customization through
natural language for end users. Addressing these challenges would significantly
transform the web development landscape, making it more accessible to diverse

users while enabling greater creative expression and personalization.

1.2.2 Lowering Barriers to Design Intelligent Tutoring Systems

A substantial segment of educators lack the programming and design expertise
to create fully functional Intelligent Tutoring Systems (ITSs) interfaces on their
own. Although one-on-one tutoring is known to significantly improve learning
outcomes [24, 25], constructing a robust tutor interface still demands considerable
technical knowledge [26, 27], limiting the potential impact of ITSs [28, 29].
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Existing solutions attempt to bridge this gap through authoring tools like the
Apprentice Tutor Builder (ATB) [29] and Cognitive Tutor Authoring Tools [30],
which offer drag-and-drop interfaces for assembling tutor layouts. However, these
tools implicitly assume educators possess interface design skills—an assumption
that overlooks research showing that effective interface design requires specialized
expertise [27]. While these tools mitigate the challenges of tutor model authoring,
they provide limited assistance with the actual design of pedagogically effective

interfaces.

This challenge represents a critical opportunity for Generative Al applications:
enabling educators to transform their pedagogical expertise and teaching require-
ments into effective digital tutoring environments without requiring them to become
interface designers or programmers. By addressing this barrier, we can significantly

expand the reach and impact of personalized learning technologies.

1.2.3 Enabling Natural Interaction in Smart Home Environ-

ments

Smart home environments represent another domain where technical barriers sig-
nificantly limit effective use and adoption. Traditional command-based automation
systems like IFTTT! have required users to conform their communication to rigid
system capabilities rather than allowing the system to adapt to the natural variability
of human language and preferences [31-33]. This fundamental mismatch between
how humans naturally express their intentions and how systems interpret commands

creates significant friction in the user experience.

This challenge is particularly evident with subjective or ambiguous requests
(e.g., “prepare the living room for a relaxing evening” or “make this room warmer”),
which traditional systems struggle to interpret accurately in terms of actionable
environmental adjustments [34-37]. While such under-specified commands are
intuitively clear to humans who can leverage contextual understanding, they often
lead to user frustration when systems fail to respond appropriately.

Recent advancements in smart home technology have begun exploring the in-

tegration of Large Language Models (LLMs) to enhance system responses to user

Thttps://ifttt.com/
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commands. Systems like Sasha [38] and SAGE [39] utilize LLMs to improve inter-
pretation and execution of complex or vague commands. However, these systems
still primarily rely on text-based inputs to process and respond to user commands,
similar to conventional smart speakers. Such textual descriptions alone may not

effectively capture the full spectrum of the user’s intended meaning [31, 40].

The challenge extends beyond mere comprehension of commands to establishing
meaningful dialogue between users and their smart environment. When systems
misinterpret ambiguous requests, users must reformulate their commands multiple
times or resort to more explicit, system-friendly phrasing—adapting to the technology
rather than having the technology adapt to them. This creates a communication
barrier that diminishes the promise of smart environments as intuitive, responsive

living spaces that enhance quality of life [41, 42].

There is a clear need for smart home interaction systems that can bridge the
gap between natural human communication and precise system actions. Such sys-
tems would need to detect ambiguity in user commands, clarify intent through
appropriate feedback mechanisms, and translate high-level subjective requests into
specific device operations. Importantly, they should leverage multiple modalities
of interaction—going beyond text to incorporate visual representations that can
more effectively convey certain types of information, particularly for ambiguous or

29 ¢

subjective concepts like “cozy,” “romantic,” or “energizing”’ room settings.

By addressing these challenges, we can transform smart home interfaces from
rigid command interpreters to intuitive communication partners that adapt to users’
natural expression patterns. This would significantly lower the adoption barrier for
smart home technologies while increasing their utility and satisfaction across diverse
user groups, ultimately fulfilling the promise of truly responsive living environments

that enhance comfort and quality of life.

1.2.4 Research Opportunities and Thesis Focus

The challenges outlined in the previous sections reveal significant opportunities for
innovation at the intersection of Al and interactive systems design. This dissertation
explores these opportunities across three domains where Al can democratize creation

and customization capabilities.
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For Web Development, we pursue two complementary opportunities with distinct
user-centered focuses: first, to develop visual-to-code translation systems that empha-
size designers’ specific needs for creative control, style preservation, and dynamic
behavior specification that current systems neglect; second, to create natural language
interfaces that prioritize end-users’ mental models and customization desires beyond
the limited options currently available. Rather than forcing designers to compromise
their vision or requiring end-users to learn technical skills, these opportunities rep-
resent a fundamental shift in how we approach web development—placing human

creativity and expression at the center while technology adapts to support it.

For Intelligent Tutoring Systems, we identify the opportunity to create Al-assisted
authoring tools that leverage educators’ pedagogical expertise while automating in-
terface design decisions. This approach offers multiple potential benefits: improving
the usability of authoring tools could significantly increase adoption rates among
educators who have previously avoided digital tutoring systems due to technical
barriers; wider adoption would extend the reach of personalized tutoring to more
diverse student populations; and better-designed interfaces resulting from Al assis-
tance could enhance student engagement, knowledge retention, and overall learning
outcomes. The opportunity lies in transforming intelligent tutoring from a special-
ized technical domain to an accessible teaching tool that any educator can implement
effectively.

For Smart Home Environments, we explore the opportunity to leverage recent
advances in large language models’ representational power and multimodal under-
standing capabilities for everyday interaction contexts. As LLMs have demonstrated
increasingly sophisticated comprehension of nuanced human language and the abil-
ity to connect concepts across modalities, a significant opportunity exists to apply
these capabilities to the gap between natural human expression and precise device
control. This opportunity extends beyond mere command interpretation to rethinking
how humans might communicate with their environments—moving from explicit
command structures to more intuitive, contextual, and multimodal conversations that

feel natural to users.

These research opportunities guide the contributions presented in subsequent
chapters, each demonstrating how Al can serve as a bridge between domain expertise
and technical implementation. By focusing on maintaining user agency throughout

the creation and customization processes, our work aims to expand who can partici-
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pate in shaping interactive systems while respecting their domain knowledge and

creative intentions.

1.3 Main Thesis Contributions

Building on the research opportunities identified above, this dissertation presents
novel methods and tools that employ Al to address the gaps between domain exper-
tise and technical implementation. Our contributions span three primary application
domains—web development, intelligent tutoring systems, and smart home envi-
ronments—addressing different user expertise levels and dimensions of interaction.
These contributions, categorized in Table 1.1 according to their technical category,
target user expertise level, and interaction dimension, demonstrate concrete imple-

mentations of our vision across diverse domains.

As shown in Table 1.1, our contributions address distinct application domains
while targeting both professional users with domain expertise and end users without
technical backgrounds. These contributions span the full spectrum from creation
of new interactive systems to customization of existing ones, providing solutions
tailored to each user category’s unique challenges and capabilities. The following
sections detail each contribution across web applications, intelligent tutoring systems,

and smart home environments.

1.3.1 Algorithmic Approaches for Professional Designers

In the domain of web development, our contributions address both professional
designers and novice end-users, focusing on different aspects of the creation and

customization process.

Transformer-Based Design-to-Code

Professional designers often create visual mockups but must wait for developers
to implement these designs as functional code, leading to costly iterations and
potential miscommunications. We developed a transformer-based architecture that
automatically translates visual designs into code, allowing designers to rapidly
prototype and test their interfaces.
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Table 1.1 Thesis Contributions Overview
User Contribution Application
Category Domain
Design-to-Code model and dataset Web
advancement: A novel architecture Development
that translates visual mockups into
functional code with higher accuracy
and generalization (Chapter 2)
Sketches and Interactive Behavior to | Web
Professional Web Uls: Techniques fpr style-aware | Development
sketch-to-code conversion and
incorporating dynamic behaviors into
design sketches through intuitive
annotations (Chapter 2)
Pedagogical Goals to Tutors’ Uls: A | Intelligent
system that automatically converts Tutoring
educators’ teaching requirements into | Systems
interactive tutoring interfaces
(Chapter 3)
Text to Web Uls: A natural language | Web
interface that enables non-technical Development
users to create websites through
conversation (Chapter 4)
Integrating GenAl into Dynamic Web
End-User UIs:' A fra‘mfeWO‘rk allowing users to Development
modify existing interfaces through
structured natural language commands
(Chapter 4)
Multimodal Disambiguation in Smart Home
Smart Homes: A method for Environments
clarifying ambiguous smart home
commands with multiple visual and
textual interpretations (Chapter 5)

Unlike previous approaches that relied on LSTM-based models, our transformer
architecture leverages attention mechanisms to better capture relationships between

visual components and their corresponding code representations. To overcome the
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limitations of existing datasets, we created a specialized scraping pipeline to curate
and clean online code, building the WebUI2Code dataset with 8,873 screenshot-code
pairs. We also generated a synthetic dataset of Bootstrap websites to further enhance

model training.

Our architectural evaluation demonstrated that the transformer-based approach
outperforms traditional LSTM-based models when tested on web UI datasets, show-
ing better handling of complex layouts and improved generalization to diverse design
styles. This contribution significantly accelerates the design-to-implementation

workflow, enabling designers to iterate more rapidly on their concepts.

Style-Aware Sketch-to-Code

Building on the design-to-code translation, we addressed a specific limitation of
existing approaches: their inability to capture and implement style variations. Current
systems typically generate code with generic visual styles rather than preserving the

designer’s aesthetic choices.

We developed an algorithm that allows designers to not only translate sketches
into code but also specify the visual style using reference images. The system seg-
ments the input sketch to identify components and their positions, then applies styles
from the reference image using two techniques: (1) a clustering-based approach to
extract prominent colors, and (2) a feature distance-based metric to select appropriate

text styles.

Our experiments with navigation bar components demonstrated that this approach
effectively captures and applies style references, enabling designers to explore
different aesthetic directions directly from their sketches. This contribution enhances

the creative control designers maintain throughout the automation process.

Dynamic Behavior in Sketch-to-Code

Complementing the style-aware approach, we also addressed the challenge of speci-
fying interactive behaviors in early design sketches. Existing systems could translate
sketches into static layouts but required manual implementation of dynamic elements

like dropdown menus, links between pages, and interactive components.
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We introduced a set of symbolic annotations that designers can incorporate
directly into their sketches to represent dynamic behaviors. Some symbols leverage
established visual languages (e.g., downward arrows for dropdown menus), while
others were introduced specifically for this purpose. A convolutional neural network
identifies these symbols and their positions, enabling the generation of code that
includes the specified interactive behaviors.

This contribution eliminates the need for separate implementation of dynamic
elements, allowing designers to specify both structure and behavior in a single sketch.
By preserving the designer’s intended interactions from the earliest design stages,
this approach further streamlines the prototyping process.

1.3.2 Empowering Educators through AI-Assisted Tools for In-
structional Design

Generative Al for Intelligent Tutoring Systems

Our first contribution addresses the challenge educators face when creating intelligent
tutoring systems. While educators possess domain knowledge and pedagogical
expertise, they often lack the technical skills needed to design effective digital
interfaces. We developed a tool that uses Generative Al to bridge this gap, allowing

educators to transform their teaching requirements into functional tutoring interfaces.

Unlike previous approaches that either required technical expertise or provided
limited design assistance, our system introduces two key innovations: Al-assisted
pedagogical step decomposition: The system automatically breaks down high-level
tutoring goals into structured instructional actions (e.g., concept introduction, guided
practice, feedback loops) derived from established ITS strategies. This decompo-
sition serves as the foundation for interface generation and ensures alignment with
effective pedagogical practices. Educators can modify these steps to maintain control

over the tutoring process.

Preference-driven Ul refinement: Rather than generating a single interface
design, our system produces multiple diverse interface drafts. Educators can then
express their preferences through direct interaction with these drafts, selecting ele-
ments they prefer. The system uses these preferences to generate a final interface that

aligns with the educator’s vision while benefiting from Al-driven design automation.
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Through a user study with eight K-12 educators, we demonstrated that our
approach significantly enhances user satisfaction and interface quality compared to
traditional drag-and-drop methods, without extending design time. This contribution
maintains the educator’s agency in the design process while lowering the technical

barriers to creating effective tutoring interfaces.

1.3.3 Web Development for End Users: Natural Language Tools
for Creating and Customizing Websites

LLM-Driven End-User Web Development

For novice users without design or programming expertise, we developed a tool
that leverages Large Language Models to enable website creation through natural
language. Traditional website development requires technical skills that present a
significant barrier for most users, while existing low-code/no-code tools often have

steep learning curves and limited flexibility.

Our approach centers around prompt engineering, which constrains the LLM
to follow a predefined template structure. This enables users to express their re-
quirements in natural language and iteratively refine the generated code without

understanding the underlying implementation. Key innovations include:

1. Structured template for LLM output: By constraining the model’s responses
to follow a specific structure, our system can reliably parse and modify gener-

ated code, maintaining consistency across iterations.

2. Context-preserving refinement strategy: Our system implements a modifica-
tion strategy that updates only specific parts of the code rather than regenerating

the entire document, preserving context and reducing token usage.

3. Multi-page support: Unlike previous approaches, our system enables users to
create and link multiple pages, supporting more complex website structures.

A proof-of-concept implementation demonstrated that this approach significantly
reduces the technical knowledge required for website creation, making web devel-

opment accessible to a broader audience. By requiring minimal technical expertise,
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our approach eliminates the need to master programming languages or design tools,

democratizing the creation process.

Real-Time Web Customization

Traditional graphical user interfaces often offer limited customization options through
predefined settings, constraining users’ ability to adapt interfaces to their specific
needs. We developed MorphGUI, a framework that combines traditional GUI
controls with LLM-powered customization to enable real-time interface modification

through natural language.

MorphGUI introduces a structured input approach that separates stylistic (‘“how
it should appear”) from functional (“what it should do””) modifications, guiding
users through the customization process. This structured approach helps address
ambiguity issues commonly found in open-ended natural language interactions while
maintaining flexibility. The system can dynamically generate new interface elements
or modify existing ones, providing customization capabilities beyond predefined

settings.

Through an experiment with 18 participants, we demonstrated that users regard-
less of their technical expertise could effectively personalize interfaces by expressing
desired changes through natural language inputs. This contribution empowers users
to realize customization intentions that may not have been anticipated by designers,

enhancing the adaptability of interactive systems.

1.3.4 Smart Home Disambiguation for Everyday Users

In smart home environments, users often issue subjective or ambiguous commands
(e.g., “make the room cozier”) that traditional systems struggle to interpret accurately.
We developed a multimodal disambiguation approach that combines visual and
textual cues with natural language commands to improve system understanding and

user satisfaction.

When a user issues a command that the system detects as ambiguous, our ap-
proach generates multiple possible interpretations and presents them to the user
through both textual descriptions and visual representations. The user can then select

the option that best matches their intent, allowing the system to take appropriate ac-
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tion. This interaction model prevents misinterpretations and frustration by involving

the user in resolving ambiguity.

Through a user study with seven participants, we evaluated the effectiveness of
textual versus visual disambiguation approaches, finding that both improved accuracy
in system interpretations. This contribution enhances the naturalness of interaction

in smart environments while maintaining precise control over system actions.

1.3.5 Summary

As illustrated in Table 1.1, the main thesis contributions address different application
domains and user categories through a combination of algorithmic approaches and
complete tools. This positioning of contributions—spanning from professional de-
signers creating web interfaces to everyday users controlling smart homes—allows
us to address technical barriers across the full spectrum of interactive system devel-
opment. The subsequent chapters will explore each contribution in depth, examining
both implementation details and their impact on lowering barriers to technology

creation.

1.4 Document Structure

The remainder of this dissertation is structured as follows:

* Chapter 2: Algorithmic Design-to-Code Translation for Professional De-
signers explores our transformer-based architecture for converting visual

designs to code with style preservation and dynamic behavior specification.

* Chapter 3: Empowering Educators: AI-Assisted Tools for Instructional
Design presents our work on intelligent tutoring systems for transforming

pedagogical requirements into effective digital interfaces.

* Chapter 4: Web Development for End Users: Natural Language Tools
for Creating and Customizing Websites details our approaches to LLM-
driven website creation and real-time interface customization through natural

language.
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* Chapter S: Intuitive Home Control: Disambiguation Methods for Ev-
eryday Users addresses resolving ambiguity in natural language commands

through visual and textual cues.

* Chapter 6: Discussion and Future Work synthesizes insights across domains,

discusses limitations, and outlines future research directions.

* Chapter 7: Conclusion summarizes the key contributions and broader impact

of this dissertation.

This structure organizes contributions according to both user categories and
approach types, highlighting how each chapter addresses specific barriers faced by
different user groups while maintaining focus on the goal of democratizing interactive

system creation and refinement.



Chapter 2

Algorithmic Design-to-Code
Translation for Professional Designers

Publication notice. Parts of this chapter expand upon and unify material previously
published in the following peer-reviewed venues: EICS 25 (“Advancing Code Gener-
ation from Visual Designs through Transformer-Based Architectures and Specialized
Datasets™), EICS’22 Companion (“Style-Aware Sketch-to-Code Conversion for the
Web”), and PAINT 22 (“Creating Dynamic Prototypes from Web Page Sketches”).

2.1 Introduction

Web applications have become essential for establishing and maintaining an effective
online presence for both individuals and organizations. The virtual representation
of an entity, whether a personal blog or corporate website, plays a critical role in
creating first impressions and ensuring sustained audience engagement. Due to their
significance, there is growing demand for sophisticated, appealing, and modern

websites, leading to increasingly complex design and development processes.

The development of web interfaces typically progresses through an iterative
process involving multiple artifacts: hand-drawn sketches, wireframes, and mock-
ups [43—45]. Sketches serve as initial, often rudimentary representations that allow
designers to swiftly visualize ideas. As noted by designers, “sketches allow designers

to focus on basic structural issues instead of unimportant details” [46], making them
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particularly valuable during early exploration. Wireframes identify the positioning of
Ul elements without styling or colors, resembling blueprints. Mock-ups present more
refined versions with styling, graphics, colors, typography, and other intricate visual
details. Once these designs receive approval from stakeholders, web developers

proceed with implementation.

This traditional workflow creates significant challenges, as documented in ex-
tensive studies of design and development practices [5, 6]. Since design and imple-
mentation typically involve separate teams, the process from concept to completion
becomes not only time-consuming but also expensive. The back-and-forth between
designers and developers introduces delays, potential miscommunications, and de-
viations from the original design intent. User studies confirm that while rough
prototypes can identify the same usability problems as finished ones [47, 48], the

manual transition from sketch to code remains a major bottleneck [12, 13].

To address these challenges, researchers have explored various approaches to
automatic website generation [49, 7]. These approaches aim to automatically convert
design artifacts into functional code, reducing the need for manual coding and
streamlining the transition from design to implementation. This integration of design
and implementation phases ensures a more direct translation of design intentions
into code, resulting in faster delivery times, cost savings, and fewer opportunities
for miscommunication. Furthermore, automated website creation democratizes web
development, allowing individuals without technical expertise to create professional-
grade websites, fostering a more inclusive digital environment where creativity is

not bounded by technical constraints.

Two primary modalities for automatic website generation have emerged: mock-
up-driven approaches that convert detailed mock-ups into code, and sketch-driven
approaches that transform preliminary hand-drawn sketches into functional websites.
The sketch-driven approach is particularly beneficial for beginners, offering those un-
familiar with web development processes an opportunity to transform basic sketches
into operational websites. Sketches serve as a natural means of human-Al interac-
tion, harnessing the inherent human ability to visualize and express ideas through
simple drawings regardless of technical expertise [6]. For designers, sketch-driven
conversion allows rapid testing of interactive prototypes, facilitating faster iteration
and refinement of concepts.
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These approaches can be further categorized into heuristic-based methods [7] that
rely on predefined rules and patterns, and end-to-end approaches [11] that use deep
learning models to handle the entire conversion process. Heuristic-based systems
process sketches and mock-ups by leveraging predefined sets of rules and patterns,
making decisions based on established guidelines. For example, a rectangular shape
might be recognized as a button, and parallel lines might be interpreted as text fields.
However, these systems can lack flexibility, and their effectiveness is heavily tied to
the quality of their underlying rules. If a design contains novel or unique elements,

the heuristic model might misinterpret or fail to detect them entirely.

In contrast, end-to-end approaches utilize deep learning models to manage the
entire conversion process. Instead of operating with fixed rules, these models
are trained on vast datasets comprising various designs and their corresponding
outputs. With sufficient training data, they can continuously adapt and improve
[50], keeping pace with evolving design trends and identifying subtle patterns that
might not be explicitly defined in heuristic rules. The encoder-decoder framework
common in these methodologies typically employs convolutional neural networks
(CNNps) to analyze image features and recurrent neural networks (RNNs) to generate
corresponding code. Pix2code [8] pioneered this approach, translating screenshots
into domain-specific language representations that could be compiled into HTML

code.

Despite progress in this field, significant limitations remain in existing design-
to-code systems. First, their performance is hindered by the limited availability of
specialized training datasets. Many existing Ul/code datasets lack diversity, being
overly simplistic and inadequately representative of real-world complexity. Second,
current approaches fail to consider aesthetic aspects (colors, typography, shadows) of
the generated interface, producing only basic structure without preserving designers’
stylistic choices [8]. As noted by researchers, “these works capture well the backbone
structure of the GUI and translate it into code, but they are not designed to consider
the aesthetics (e.g., colors and shadows) to be applied to the generated interface” [6].
Third, dynamic behaviors (links, dropdown menus, page transitions) typically require
separate manual implementation, preventing designers from specifying interactive
elements in their initial sketches. Finally, current end-to-end approaches predomi-
nantly rely on LSTM-based architectures, with the potential of transformer-based

models largely unexplored in this context.
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This chapter presents our research addressing these limitations through three
interconnected innovations. First, we introduce a transformer-based architecture
for design-to-code translation that leverages attention mechanisms to better capture
relationships between visual components and their code representations. By de-
veloping specialized web scraping pipelines and synthetic datasets, we overcome
the data limitations that have constrained previous approaches. Second, we present
a style-aware approach that allows designers to specify visual aesthetics through
reference images, automatically extracting and applying style elements including
colors and typography. Finally, we introduce a method for specifying dynamic
behaviors directly in sketches through symbolic annotations, enabling the generation

of fully interactive prototypes without separate implementation steps.

Our work advances the state of the art in design-to-code translation by addressing
both the technical and user-centered aspects of the problem. By improving the
architectural foundation through transformer-based models, we enhance the accuracy
and generalization capabilities of automated translation. By incorporating style
awareness and dynamic behavior specification, we preserve more of the designer’s
creative intent throughout the automation process. Together, these contributions
significantly reduce the technical barriers that have traditionally separated design
from implementation, empowering designers to rapidly prototype and iterate on their

concepts without waiting for manual code translation.

The following sections detail our transformer-based architecture for design-
to-code translation, our style-aware sketch-to-code conversion approach, and our
method for specifying dynamic behaviors in sketches. Through empirical evaluations
and case studies, we demonstrate the effectiveness of these approaches in stream-
lining the web development workflow while preserving designer control over both

stylistic and functional aspects of the resulting interfaces.

2.2 Transformer-Based Architecture for Design-to-
Code Translation
We introduce three interconnected components aimed at advancing the automation

of web development from visual designs and overcoming the constraints of existing

datasets and methodologies. Initially, a web scraping pipeline is established to
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gather and process actual website code and screenshots. This pipeline acquires the
HTML content rendered by websites and goes through a sanitization process to
eliminate unwanted code elements such as scripts and comments. It also identifies
and downloads any related CSS files, which are then processed by a custom parser.
The processed HTML and consolidated CSS files are subsequently rendered to
generate website screenshots. A classifier is utilized to filter these screenshots,

retaining only those that maintain the original layout post code reduction.

Subsequently, a synthetic dataset generation technique is implemented. This
method generates websites in a procedural manner while adhering to a popular
front-end framework, providing control over parameters such as layout, components,
color palettes, and text. A recursive screenshot capture system is integrated to
ensure comprehensive rendering of all page elements. To produce a sketch variant,
UI components are replaced with hand-drawn sketches based on bounding box

annotations.

Finally, we compare the performance of two transformer models for the design-
to-code task: a Pix2Struct model and a larger, more powerful Gemma2b model.
Both models utilize a vision transformer encoder to process rendered website screen-
shots, coupled with an autoregressive transformer decoder that produces HTML
and CSS tokens sequentially. The evaluation of these models is conducted on a
real-world dataset from a web scraping pipeline and on synthetic datasets under
various conditions. These conditions encompass scenarios where rendered elements
are substituted with sketches to mimic lower-fidelity designs, different levels of
website layout complexity, and variations in token thresholds for code generation.
This assessment enables us to examine the performance discrepancies between the

Pix2Struct and Gemma2b models in diverse design-to-code scenarios.

2.2.1 WebUI2Code Dataset: Real-World Website Screenshot-
Code

Our data collection procedure utilizes a multi-stage pipeline to fetch, sanitize, and
validate websites, ensuring high structural fidelity and practical manageability for
subsequent machine learning tasks. As shown in Figure 2.1, the process starts by
loading each target URL in headless mode using Selenium and Google Chrome.
The browser operates at a fixed resolution (1280x 1024) for standardized captures.
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A retry mechanism is activated if a site fails to load completely. Common pop-up
dialogs (e.g., cookie consent banners) are automatically dismissed by removing their

scripts or simulating clicks on typical acceptance buttons.

After obtaining the raw HTML, an automated sanitizing phase follows, where
extraneous or dynamic tags—such as script, meta, noscript, svg, and iframe—
are systematically eliminated. The sanitization script also corrects malformed tags
and replaces asynchronous attributes (e.g., data-src, data-lazy-src) with their
standard counterparts (src, srcset). Additionally, all external images are replaced
with a standard placeholder image to avoid unnecessary resource downloads and
maintain visual consistency. To reduce minor layout differences, certain HTML
elements (e.g., <ol> tags) are converted to functionally similar ones (e.g., <ul>)
when essential structural differences are not present. Subsequent to this filtering, a
cleaning tool (clean-html) eliminates any remaining comments, irregular whites-
pace, or unnecessary line breaks, and formats the code with a consistent indentation

scheme.

Upon obtaining the sanitized HTML, the process identifies external CSS refer-
ences, downloads each . css file, and parses them using a custom extension built
on top of tinycss2. This parser recognizes at-rules and qualified rules, enabling
selective elimination of styles that do not correspond to any tags or classes present
in the cleaned HTML. Properties deemed purely ornamental or irrelevant to the
core structure of the website (e.g., transition animations or outdated browser-specific
rules) are pruned to reduce complexity. The remaining valid CSS is then consolidated

into a single file, and the HTML references are adjusted accordingly.

Prior to the final screenshot capture, a web framework detector is applied to
identify frameworks like React, Gatsby, Nuxt, Backbone, or Next. These frameworks
typically add substantial client-side code that may fail to render correctly post-
sanitization. If any of these frameworks are detected, the respective site is excluded
from the final dataset to ensure consistency. Additionally, sites with sanitized HTML
containing no CSS classes or being trivially empty are also filtered out.

After applying these filters, screenshots are generated by loading the local HTML
file in a headless browser environment. By rendering the sanitized HTML along with
the consolidated CSS, the resulting screenshot more accurately represents the final
“minimal” version of the webpage compared to capturing the original online page.

Examples of the resulting mockups are illustrated in Figure 2.2. The reduction in
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size is significant, especially in the CSS: Table 2.2 demonstrates that many pages

decrease from tens of thousands of lines to just a few thousand or fewer.
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Fig. 2.1 The diagram depicts the step-by-step process of acquiring website code and screen-
shots. Initially, the HTML file is downloaded, sanitized, and cleansed. Next, the HTML
file is analyzed by a web framework detector that screens files with specific frameworks.
Subsequently, CSS URLs are identified from the HTML file, and the corresponding CSS files
are downloaded, minimized, and merged. A detector is then employed to filter out files with
no CSS classes. The processed HTML and CSS files are then utilized to generate website
screenshots. Finally, a classifier assigns labels to the screenshots based on their quality.
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A final quality assessment is conducted using a ResNet50 convolutional neural
network [51] that has been fine-tuned on a labeled set of “good” vs. “bad” screenshots.
This binary classifier was trained to effectively differentiate between pages that
maintain essential layout integrity and those that display significant structural issues
or missing styles. The training data for this classifier was obtained from initial pilot
studies, where grades (ranging from 0 to 5) were manually assigned based on visual
quality and structural completeness. Lower scores were often associated with empty
pages, heavily distorted layouts, or frameworks that were beyond the capabilities of
the pipeline. By translating these manual ratings into “good” and “bad” categories,
the classifier achieved an accuracy of over 80% on a separate test set. Following this
classification step, the “bad” images are removed, resulting in a refined collection of

“good” screenshots along with their processed HTML/CSS for further analysis.

‘Beginner's Guide for WordPress | st s Woubres Sgin s

Fig. 2.2 Screenshot of website before and after processing.

Three initial investigations examined this process on subsets of different com-
plexities: an initial trial on a small list of 51 blog sites, a second on 100 sites from
the Majestic Million ranking, and a third on 100 .blog domains. These step-by-step
tests not only emphasized the strengths of the process (particularly for simpler or
blog-focused pages) but also identified challenging scenarios (e.g., large commercial

sites with anti-scraping measures or sophisticated client-side rendering).
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‘ Total
Errors 29736
Excluded 16459

Bad images 19716
Good images | 34089
TOT 100000

Table 2.1 Results obtained by filtering websites according to their quality

Human evaluators compared the processed screenshots to their original online
counterparts, assigning numeric grades and analyzing major differences. The results
informed thresholds for excluding particular frameworks or “unstructured” pages.
When extended to 100 000 domains from the Majestic Million, the pipeline retained
approximately 34,000 “good” pages out of 100,000 total entries; see Table 2.1 for
an overview. Overall, the biggest sources of error were connection and SSL issues,

especially from highly-protected websites, along with malformed CSS.

| Raw Processed
CSS Classes 1788.03 143.39
CSS Classes Skipped 0 1596.25
CSS Properties 220.31 7842
CSS Properties Skipped | 0 17.83
CSS URLs 8.14 8.11
HTML Classes 238.64  234.75
HTML Tags 35.94 26.86
HTML Nodes 860.75  699.58
Lines CSS 20240.5 2255
Lines HTML 1542.25 996.08

Table 2.2 Summary of average statistics collected for each website

Through a systematic refinement of the pipeline at each stage—from HTML
retrieval and sanitization, to CSS minimization and screenshot classification—the
WebUI2Code dataset is able to produce a relatively clean and structurally repre-
sentative set of real-world Uls. This multi-tiered filtering strategy intentionally
sacrifices coverage in order to filter out visually unrecognizable or fundamentally
broken pages. While this filtering improves quality, it also biases the dataset towards
simpler, more statically structured websites (such as blogs and informational pages)

and tends to exclude highly dynamic, JavaScript-heavy web applications, which
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represents a known limitation in coverage. The end result is a large-scale collection
of HTML/CSS/screenshot triples that exhibit significantly less noise compared to
raw scrapes, providing a valuable test environment for design-to-code models and

other interface-centric research.

2.2.2 HTML Bootstrap Synthetic Dataset

The HTML Bootstrap Synthetic Dataset was created utilizing the open-source tool
WebGenerator [52]. This tool was designed for generating synthetic web-based
user interfaces (Uls) using the Bootstrap framework. It offers various options for
generation, such as probabilities for layouts and sections, sizes of screenshots, and
types of components. These components encompass commonly used elements
like Cards, Placeholders, Tables, and Navigation bars, as well as specialized ones
like Carousels and Forms. The tool populates these elements with random “lorem
ipsum” sentences to simulate the appearance of practical Uls. Additionally, it can
produce diverse website styles by choosing random color palettes and adjusting
the CSS file in the HTML code, enabling the creation of multiple unique website
designs. By adjusting the parameters of the WebGenerator, the resulting websites
exhibit a wide range of designs and structures. This variability ensures that any
model trained on this dataset will possess increased robustness and generalizability.
Furthermore, due to its utilization of the Bootstrap framework, this dataset remains
relevant in contemporary web development. Bootstrap stands as one of the most
popular front-end libraries, with its components being widely used on numerous
websites. Therefore, it holds practical significance and can serve as a valuable
resource for research aiming to develop real-world applications. To tailor the tool to
our requirements, we implemented a recursive system for capturing screenshots to

ensure that all webpage elements are captured within the screenshot.
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Fig. 2.3 A series of random sampled web interface mock-ups from synthetic dataset demon-
strating varied design patterns. From left to right: a content-focused layout with distinct
navigation elements; a grid-based interface highlighting data presentation; and a minimalistic
approach with prominent call-to-action features.

Examples of the website screenshots generated by the WebGenerator are shown
in Figure 2.3. As these screenshots are artificially created, they do not include any
real-world data, making them a valuable dataset for research purposes without privacy
or data rights concerns. The JSON annotations provided with details on GUI regions
and types offer researchers a comprehensive insight into the webpage’s layout and
design elements. Such annotations can be beneficial for supervised machine-learning
tasks that require accurate labels. We revised the component annotation process to
identify more specific components like text and buttons instead of general labels such
as "header’ or ’footer. This adjustment facilitated the conversion to sketches. After
configuration, a dataset of 50,000 samples was generated. Each sample comprises a
PNG image of the webpage screenshot, its corresponding HTML code, and JSON
annotations.



2.2 Transformer-Based Architecture for Design-to-Code Translation 29

Description ‘ Value
Probability that the Sidebar is present 0.7
Probability that the Header is present 0.5
Probability that the Navbar is present 0.8
Probability that the Footer is present 0.6
Probabilities of each layout (4 layouts). 0.25
Probability that the page’s Body is boxed inside a container | 0.0
Probability of having a big header 0.0
Probability of the Sidebar being at the left side of the Body | 0.8
Probability of the Navbar being above the header 1.0

Table 2.3 Generation probabilities used for the synthetic dataset configuration

2.2.3 Generate Synthetic HTML Bootstrap Dataset Sketches
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Fig. 2.4 This flow diagram illustrates the multi-stage transformation process, which com-
mences with synthetic webpages containing structured design elements and textual content.
Subsequent extraction of specific components results in generator annotations. These annota-
tions facilitate the conversion of structured designs into abstract, hand-drawn sketches.

In order to apply the synthetic dataset in the sketch-to-code challenge, we enhanced
the generation function by incorporating a technique to track the bounding boxes of
detailed components, the fundamental design elements. Due to the synthetic nature
of the dataset, we were able to annotate and retrieve these bounding boxes easily
without the need for object detection methods. Subsequently, the identified com-
ponents were replaced with their sketched counterparts from the Synz dataset [53],
a comprehensive compilation of sketched web components. Each component is
cropped to the smallest rectangle containing the first non-white pixel, as we noticed
redundant whitespace in the Synz dataset. Moreover, one component out of the
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top 10 components with a similar aspect ratio to the bounding boxes is randomly
chosen for inclusion. This methodology facilitated the development of a synthetic
dataset of web sketches with varied compositions. As a result, this iteration generated
almost 10,000 websites (specifically 9,789), following the same methodology and
parameters as the original synthetic Bootstrap dataset.

2.2.4 Transformer Architecture for Design-to-Code

Transformer models have revolutionized sequence-to-sequence translation tasks by
utilizing self-attention to capture long-range dependencies without the sequential
processing limitations of LSTM-based methods [54]. In the context of design-to-code
translation, a transformer is capable of processing image patches (visual tokens) and
partial code tokens (textual context), which results in the generation of new tokens
representing the evolving HTML or DSL output (Figure 2.5). Here, we provide a
brief overview of our chosen approach, highlighting practical considerations that are

important when dealing with large screenshots and extensive code sequences.

Vision Transformer Encoding. In line with the methodology of Pix2Struct [55],
the input screenshot undergoes an initial division into patches of equal size (e.g., P X
P pixels), each of which is transformed into a latent vector. By stacking transformer
layers over these patch embeddings, a contextualized representation of the webpage
image is obtained, capturing both the overall layout and specific component details.
Unlike architectures based solely on convolutions, this patch-wise strategy inherently
treats the layout as a sequence of visual tokens, allowing for adaptable handling of
various aspect ratios and user interface complexities.
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Fig. 2.5 A visualization of the process to transform web mock-ups into code. On the left, a
web mock-up is divided into patches, which are handled by Vision Transformers to produce
contextualized encodings. The middle section showcases the autoregressive transformer
decoder, which creates code tokens in a sequence according to the visual encodings.

Utilizing Sliding Window for Generating Lengthy Code. When creating the
complete HTML content of a webpage, it often surpasses the standard context-length
limits for Pix2Struct [55]. To address this challenge, we implement a sliding window
strategy for text generation: at each iteration, the decoder is provided with (i) the
full set of image embeddings, and (ii) a truncated history of previously generated
tokens (e.g., the last N tokens). It then predicts the next M tokens, shifts the window,
and repeats the process. Through empirical observations, we have found that this
approach maintains coherence as the model learns to seamlessly continue from
its previous state, associating specific image regions with partial code snippets.
Although each window does not encompass the entire code history, the combination
of local textual context and consistent image encoding is adequate for maintaining
syntactic coherence. This technique effectively overcomes GPU memory limitations

while still allowing for the reconstruction of lengthy HTML files.

In contrast, FerretUI-Gemma has the capability to handle larger textual contexts
in a single forward pass, thereby relying less on sliding windows and more on a com-
prehensive memory of the entire code sequence. While this approach often leads to

improved performance on very large or heavily annotated web pages, it demands sig-
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nificantly more computational resources. On the other hand, our approach based on
Pix2Struct, combined with sliding-window text decoding, strikes a balance, enabling
the processing of intricate layouts without exceeding memory constraints. Both
methodologies emphasize the significance of accurately modeling image-to-code
ratio awareness: the network must align different sections of the UI screenshot with
semantically relevant code segments, whether this alignment is achieved iteratively
(sliding window) or in a single comprehensive pass (long context). As confirmed
by our experiments, both strategies can be effective, but practitioners must consider
the trade-off between hardware resources and the complexity of the web Uls being
analyzed.

2.2.5 Experiments

In the following sections, we assess the performance of the transformer-based
Pix2Struct architecture in three different scenarios: validating our real-world We-
bUI2Code dataset and synthetic datasets using the model’s performance, and compar-
ing Pix2Struct’s effectiveness for design-to-code generation with traditional RNN-
based methods on established benchmarks. These experiments offer insights into
both the capabilities and constraints of transformer-based approaches for automated

web development, with implications for practical web design applications.

Datasets

The experiments utilized the following datasets to evaluate the proposed method:

WebUI2Code Dataset: The “WebUI2Code” dataset, described in Section 2.2.1,
arises from our scraping pipeline designed to extract website codes and their cor-
responding screenshots from the web. Comprising 8,873 samples, each data point
in this dataset consists of an HTML file, an associated CSS file, and a screenshot.
Alongside these, the dataset also includes supplementary files, such as a JSON
detailing the metrics from the scraping process, and the unprocessed versions of
the HTML and CSS files. The WebUI2Code dataset was segmented into distinct
versions to adapt to different experimental needs, grounded in the dataset’s size and
complexity. By creating subsets of the data with specific token thresholds, we aim to

ensure that the experiments are both manageable and scalable.
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The WebUI2Code-4096 Version has been set with a token threshold of 4,096.
This version includes 2,442 samples and has been curated to align with the token
constraints applied to other datasets in parallel studies. Next, the WebUI2Code-
8192 Version increases the token threshold to 8,192, accommodating slightly more
intricate samples. Composed of 1,906 samples, the number of usable samples in this
version varies based on additional constraints and preprocessing measures that may

be applied.

The dataset continues to expand with the WebUI2Code-12288 Version, which
is characterized by a token threshold of 12,288. With 2,170 samples, this version
showcases a broader range of web designs, representing the diversity of web content

as the token limit grows.

Lastly, the WebUI2Code-16384 Version presents a more comprehensive collec-
tion of web designs, accommodating a token threshold of 16,384. Consisting of
2,355 samples, this version has been crafted to include websites with more extensive
content and structure.

Each of these versions represents a different aspect of web design, ranging from
simpler web pages to more intricate and content-rich designs. As the token threshold
increases, the datasets not only expand in sample size but also in the depth and

variety of content, providing a progressive method for evaluating models.

HTML Bootstrap Synthetic Dataset(s): The HTML Bootstrap Synthetic Dataset,
as detailed in Section 2.2.2, establishes a more intricate foundation for testing and
assessing recent encoder-decoder architectures. This dataset encompasses various
design components like cards, placeholders, tables, navigation, carousels, forms, and
more. Web pages generated synthetically are crafted using a collection of predefined
templates that replicate real-world web design standards. These templates are care-
fully selected to encompass a broad range of web page layouts. By incorporating
such diversity, the Synthetic Dataset becomes a valuable asset for comparing the
efficacy of algorithms meant for interpreting and producing web code from visual
inputs. This dataset comprises 50,000 examples, each comprising a website screen-
shot alongside its HTML-Bootstrap code. An alternative version of this dataset was
developed featuring sketches of website elements in place of the actual rendered
components. This was achieved by identifying the space occupied by each real

element and substituting it with a sketched representation, as elaborated in Section
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2.2.3. The outcome is a dataset containing nearly 10,000 websites (9,789), with
HTML codes generated in the same manner and with identical parameters as the

original Synthetic Bootstrap dataset.

Pix2code Dataset: The dataset created by Pix2Code [8] is relatively simple in
its composition but serves as the baseline for comparing with existing literature. It
consists of screenshots of different web and mobile interfaces, each accompanied by a
Domain Specific Language (DSL) code. This DSL serves as an intermediate language
that describes the structure and components of the UI, facilitating its conversion
into functional codes like HTML or Android XML. The dataset is categorized into
Android, 10S, and Web interfaces. The web subset, which is the main focus here,
contains 1,742 samples. One notable aspect of this dataset is its simplicity. It
includes only 12 distinct structural elements, with UI codes mostly composed of

99 <¢

these elements and specific arrangement indicators. Elements like “small-title,” “text,”
and “quadruple” are commonly found, making up almost half of all elements in the
dataset. On average, a website’s code in the dataset consists of 8 to 56 elements. The
conversion of DSL codes into HTML resulted in a modified version of the dataset,
pairing HTML codes with the screenshots. Discrepancies in text can be observed
between the original screenshots and the compiled ones due to the non-deterministic
nature of character generation during compilation. To maintain consistency, a version
of the dataset was created that uses “lorem ipsum” as a placeholder text. In the
past, the Pix2Code dataset has been used in various studies to improve certain
methodologies. However, its potential as a benchmark for future advancements may

be reaching its limits.
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Fig. 2.6 Treeplot comparison between the distribution of tags between a) Pix2Code dataset
and b) the HTML Bootstrap Synthetic Dataset. The area of the rectangles represent the
distribution of the components in the dataset.

Metrics Various metrics were employed to evaluate a model’s ability to predict
website code from screenshots. Textual metrics predominantly utilized the original
responses and predictions, while others, such as structural BLEU and HTML tree
edit distance, required full code compilation and post-processing. Errors identified
during corrections were saved for later analysis, and codes displayed by browsers

were used to generate screenshots for image similarity metrics.

* BLEU: A commonly used metric for assessing machine-translated text. It
measures the overlap of n-grams between generated and reference texts. How-
ever, its relevance in code prediction is limited due to the syntactic nature of
code. To address this limitation, a variant known as “structural BLEU” was
introduced, focusing on structural code elements by excluding non-structural
elements. The Natural Language Toolkit (NLTK) was used to calculate the
BLEU score, incorporating a specific smoothing function to handle precision
differences in shorter texts.

» Edit Distance: This metric calculates the Levenshtein distance between two
texts, indicating the number of character changes required to make them identi-
cal. For example, transforming “rain” into “shine” involves three modifications.
The NLTK was once again used to implement this metric, with all operations
assigned equal costs. A normalized version, based on the maximum character

count between response and prediction, was also applied.
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* HTML Tree Edit Distance: Driven by the concept of “structural BLEU”, a
distance metric that emphasizes structural elements was introduced. HTML
code is represented as a tree structure, with the tree edit distance calculated
using the Zhang-Shasha algorithm. The algorithm identifies the minimum
node modifications needed to transform one tree into another. The Beautiful
Soup parser extracted HTML nodes, and a Python implementation of the
Zhang-Shasha algorithm was employed. A normalized version, taking into

account the maximum node count between the two trees, was also explored.

 Structural Similarity Index (SSIM): In contrast to other approaches, SSIM
focuses on pixel inter-dependencies, providing insights into the structure of a
visual scene. The scikit-image implementation of SSIM was used. One draw-
back is its requirement for identical image dimensions, which may necessitate

resizing and potentially alter image components, impacting the SSIM index.

Configuration

All experiments were carried out on a dedicated server equipped with four NVIDIA
A100 GPUs (each with 68 GB of VRAM). This setup offered the required compu-
tational capacity for large-scale transformer training on both our Pix2Struct and
FerretUI-Gemma2B models. For initial testing and prototyping tasks, we also uti-
lized smaller-scale GPU resources (NVIDIA V100s with 32 GB VRAM or T4s with
16 GB VRAM), striking a balance between computational performance and cost

efficiency.

Pix2Struct. A two-phase training schedule was employed. In the first phase,
training was conducted on the synthetic dataset for 20 epochs with a learning rate of
1 x 10~*. In the second phase, the model underwent fine-tuning on the WebUI2Code
dataset for an additional 10 epochs using a learning rate of 1 x 107>. The batch size
was set to 32, with gradient accumulation over 4 mini-batches to effectively simulate
a larger batch size of 128. Adafactor was used as the optimizer, and a cosine learning
rate schedule was implemented, including a 5-epoch warm-up period. Additionally,
gradient clipping with a maximum norm of 1.0 was applied to ensure stable training.
To process high-resolution screenshots, image inputs were limited to a maximum

of 1024 patches while maintaining the aspect ratio. For text decoding, a sliding
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window strategy was utilized on the HTML tokens: each window spanned 1024
tokens, with a 256-token overlap to provide context from previously decoded chunks.
Empirically, this strategy helped alleviate memory constraints and enabled the model

to autoregressively assemble longer code sequences with minimal coherence loss.

FerretUI-Gemma2B. Training Gemma2B was conducted using a similar 4 x A100
GPU setup, with parameters tailored for large-scale vision-language instruction
tuning. The per-GPU batch size was set at 2 (yielding a total of 8 across 4 GPUs),
gradient accumulation steps were set to 2, and the training ran for 10 epochs with a
learning rate of 2 x 107>. To address potential variations in input image resolutions,
Gemma?2B was configured with an “anyres” setting, resizing images to 336336
while preserving aspect ratio metadata. The architecture and script parameters,
including gradient checkpointing, half-precision BF16, a warm-up ratio of 0.03, and
a cosine scheduler, were fine-tuned to ensure stable training for large instruction-
tuned setups. Despite Gemma2B offering a broader context in a single forward pass
compared to Pix2Struct, it comes at the cost of increased computational demands

and VRAM usage due to its larger parameter count.

Both models were trained using a 90:10 split for training and testing, with a
small portion of the training set (approximately 10% of total samples) reserved for
validation and hyperparameter tuning. Evaluation was performed every 5 epochs for
Pix2Struct and at 100-step intervals for Gemma2B, capturing metrics such as cross-
entropy loss and BLEU scores. These configurations allowed for an exploration of
the trade-offs between memory consumption, training speed, and real-world dataset

performance.

2.2.6 Results

We compared two transformer-based methods—the relatively smaller Pix2Struct
model and the larger FerretUI-Gemma2B—as well as an LSTM-based approach
(Pix2Code) on various datasets to evaluate the quality of code generation. Table 2.4
presents our results, showing BLEU scores, edit distances, and visual appearance
metrics (SSIM).

To compare the baseline LSTM architecture against transformer approaches,
we start with the Pix2Code dataset. As depicted in Table 2.4, Pix2Struct achieves
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Model/Dataset ‘ BLEU (avg) T ED (avg) | N.ED (avg) | SSIM (avg) 1
LSTM

Pix2Code 0.878 4.925 0.132 0.935
Pix2Struct

Pix2Code 0.983 4.437 0.016 0.942
Synthetic Bootstrap 0.929 443.890 0.081 0.783
Synthetic-Sketches Bootstrap 0.825 1146.678 0.202 0.810
WebUI2Code-4096 0.436 6920.180 0.714 0.547
FerretUI-Gemma2b

Pix2Code 0.995 1.196 0.004 0.939
Synthetic Bootstrap 0.740 1796.909 0.226 0.885
Synthetic-Sketches Bootstrap 0.725 1757.678 0.242 0.879
WebUI2Code-4096 0.397 5790.563 0.487 0.978

Table 2.4 Comparison of Metrics Across Different Datasets

a BLEU score of 0.983, outperforming Pix2Code’s 0.878. The normalized edit
distance (N.ED) also decreases significantly from 0.132 to 0.016, indicating a much
closer match between the transformer’s output and the reference code. While the
SSIM values are similar (0.935 vs. 0.942), Pix2Struct demonstrates a clear advantage
in both lexical (BLEU) and structural (N.ED) comparisons, highlighting the benefits

of attention-based models for design-to-code translation.

On the Synthetic Bootstrap and Synthetic-Sketches datasets, Pix2Struct achieves
high BLEU scores (up to 0.929) while maintaining reasonable SSIM values (e.g.,
0.783). For sketches, where text is replaced by visual elements, BLEU scores
slightly decrease, reflecting the increased complexity of parsing purely visual inputs.
Nonetheless, the model effectively captures the structural layout (as indicated by
relatively low edit distances and a strong SSIM of 0.810). These findings affirm that
attention-based methods can adapt to diverse input formats, ranging from plain text

elements to purely visual sketches.

We also assessed FerretUI-Gemma2B, a larger vision-language architecture,
which has the potential for more robust multimodal embeddings but requires higher
computational resources. As depicted in Table 2.4, Gemma2B achieves slightly
lower BLEU scores on Synthetic Bootstrap (0.740) compared to Pix2Struct (0.929),
yet it demonstrates higher SSIM on the same dataset (0.885 vs. 0.783). This suggests

that while token-level agreement may decrease, Gemma2B better preserves the
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visual layout. When analyzing real-world websites from WebUI2Code-4096, both
models achieve BLEU scores around 0.436. Nonetheless, Gemma2B exhibits a
significantly higher SSIM of 0.985, whereas Pix2Struct remains at 0.547. This
distinction underscores Gemma2B’s advantage in replicating complex interface

visuals, albeit at the cost of requiring substantially more computational resources.

Despite achieving favorable results on synthetic and sketch-based datasets, both
transformer models encounter difficulties when dealing with the intricate HTML
structures encountered in real-world websites. Even with sliding-window decod-
ing to handle longer HTML sequences, the average BLEU scores remain around
0.43-0.44. Challenges include misinterpreting complex CSS usage or generating
inconsistent tag hierarchies when the code deviates from typical patterns. Notably,
FerretUI-Gemma2B often compensates for textual discrepancies by producing visu-
ally accurate outputs (resulting in a high SSIM), demonstrating that different models
may prioritize layout fidelity over textual precision.

Our findings validate that transformer-based techniques significantly outshine the
LSTM baseline on established benchmarks (Pix2Code) and demonstrate consistent
performance on synthetic datasets of various complexities. Pix2Struct typically
achieves higher BLEU scores, while FerretUI-Gemma2B excels in reproducing
visual likeness (SSIM, ED) but requires more computational resources. Figure 2.7
displays representative samples from each dataset.

Random Sampled Results
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a) Pix2Code b) Synthetic-Bootstrap c) Synthetic-Sketches d) WebUI2Code

Fig. 2.7 Random samples from our data (first row) and predictions (second row).
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2.2.7 Discussion

Our analysis uncovers three main discoveries concerning transformer-based method-
ologies for automating web design. Initially, the transformer structures vastly surpass
conventional RNN-based approaches on recognized benchmarks, achieving greater
precision in code creation from basic Ul mockups. This confirms the potential of
these structures for the design-to-code task, consistent with their triumphs in other

vision-language sectors.

Subsequently, the models exhibit consistent performance on our artificial datasets,
indicating their suitability for managing diverse design depictions and elements. This
capacity, especially in handling both intricate mockups and sketches, shows signif-
icant promise for supporting various phases of the design process and facilitating
practical design tools.

The third observation arises from our assessments on real-world websites within
the WebUI2Code dataset, wherein a notable decline in performance is noted. Several
factors contribute to this issue: the inherent intricacy and variability of operational
websites in contrast to synthetic data; the existence of dynamic features and intricate
CSS styling that may not be captured in fixed images; and the array of coding methods
and optimization strategies used in real-world development, resulting in many-to-
many connections between visual appearance and backend code. Furthermore, actual
websites frequently incorporate elaborate responsive design structures and browser-

specific optimizations that are challenging to deduce from individual images.

These conclusions hold significant implications for the evolution of automated
web development. While transformer structures exhibit potential for design tools and
prototype support, the disparity in performance between synthetic and real-world
scenarios implies that present models may face challenges relying on real-world
datasets for training.

However, utilizing models trained on synthetic data can remain beneficial as
enhancement tools for tasks such as rapid prototyping, design exploration, and
learning support, even in scenarios where perfect code generation is not essential.
Additionally, these advancements have the potential to make web development more
accessible by empowering individuals with limited coding proficiency to convert
their designs into operational code. The sketch-to-code capabilities in particular

can enhance rapid prototyping and early-stage design exploration. Nonetheless, the
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effective implementation of these technologies will rely on continual enhancements
in model architectures and training data, as well as their strategic integration into

existing design workflows and tools to maximize their advantages for end users.

Implications for Engineering of Interactive Systems

The conversion of Ul designs into operational prototypes using automated code
generation shows great potential for both beginners and experts in interactive sys-
tems. For end users, the capability to draw a layout and receive a functional model
significantly reduces the obstacles to technology development. This strategy is in line
with the overarching objectives of user-centered design, emphasizing empowerment
and simplicity of refinement. Instead of needing in-depth understanding of technical
details, users can quickly experiment, improve, and validate their concepts in a
tangible format. This increased accessibility could encourage broader involvement
in UI design, nurturing collaborative communities where design concepts can flow

more openly.

On the other hand, experienced developers and designers often face constraints
due to deadlines and the need to assess various design options. By implementing a
design-to-code process utilizing transformer architectures, these professionals can
delegate the more routine or mechanical tasks involved in prototype development.
The system’s acquired ability to produce logical code structures from abstract ideas
expedites the overall workflow. In conventional development cycles, minor adjust-
ments to the interface design could trigger a series of manual coding and layout
modifications; in this scenario, the alterations are managed at a conceptual level,
with adjustment mechanisms handling the details of low-level coding. These im-
provements in efficiency not only offer a quicker path to refined prototypes but also

allow human expertise to focus on impactful creative and user-oriented activities.

Moreover, these techniques establish potential routes for seamless integration
into contemporary design workflows. Within numerous teams, interactive design
initially takes shape within specialized software—ranging from wireframing tools to
more tailored prototyping platforms—prior to transitioning into code. The concept
of connecting these tools with a robust transformer model implies that the entire
process from idea conception to interactive demonstrator creation can be signifi-
cantly expedited. Furthermore, the iterative nature of user testing, a crucial aspect of

research in human-computer interaction, is also positively impacted by this efficient
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approach: due to the rapid generation and modification of prototypes, user feed-
back loops can occur more frequently, facilitating real-time design improvements.
Ultimately, the combination of user-centered design principles with sophisticated
language-modeling techniques has the potential to transform the way interactive
systems are developed, making them more accessible to newcomers and increasing

efficiency for experienced professionals.

Adaptive Learning and Personalization

As Al systems increasingly influence web design and development, they are moving
beyond static, one-size-fits-all outputs. Instead, emerging approaches can adjust to
individual user behavior patterns, providing personalized code-generation experi-
ences. By examining a designer’s previous decisions, a modern Al platform can
learn to predict future preferences and propose Ul components or design layouts
that match the user’s evolving style. This adaptability is based on sophisticated
algorithms: reinforcement learning enables a system to continuously modify its pa-
rameters according to real-time feedback, while transfer learning allows knowledge
obtained in one domain—such as layout heuristics—to aid in design tasks in an-
other. From a perspective of human-computer interaction, these adaptive Al systems
intersect with both End-User Development (EUD) and Adaptive User Interfaces
(AUIs). Through EUD, non-technical individuals can guide the Al to concentrate on
specific design constraints or branding elements without formal coding skills. On
the other hand, AUIs adjust their interactions dynamically based on user feedback,
catering to various skill levels and interface preferences. These aspects collectively
support inclusivity and empower users, ensuring that automated design tools are
responsive to each designer’s artistic direction. Our contribution establishes a basis
for these adaptive workflows by illustrating how an Al design-to-code system can
learn not only general design patterns, but also context-specific signals gathered
from repeated user interactions. As time progresses, the model’s predictions become
more personalized, facilitating more efficient prototyping and smoother creative
exploration. This concept of adaptive design assistance propels the field towards
intuitive, user-centered methodologies, bridging the gap between automated code

generation and designer-led innovation.
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2.2.8 Summary

Our study makes significant contributions to the advancement of web development
in several ways. The introduction of an enhanced WebUI2Code dataset, particularly
its data collection process, establishes a solid groundwork for converting mock-ups
into code solutions. Additionally, our synthetic datasets facilitate the exploration of
sketch-to-code systems, making it easier for non-technical individuals to participate
in web development. Our evaluation of two recent transformer-based models shows
enhancements in traditional benchmarks and successful outcomes with our synthetic
data. These findings are in line with current trends in artificial intelligence, indicating
a future where intricate and diverse web designs can be accurately transformed into
functional websites. Moving forward, our focus will be on gathering even larger
datasets and conducting extensive training on a large scale. This will be followed by
thorough experimentation involving designers and actual users. We foresee the devel-
opment of systems capable of learning and adapting to individual design preferences
and workflows. These systems could utilize methods such as reinforcement learning
to adjust based on user input and transfer learning to handle a variety of design
scenarios, resulting in more personalized and responsive design experiences. By
integrating these technological advancements with practical workflows and needs, we
aim to create precise and user-centered design enhancement tools. Our contributions
are geared towards promoting web development that follows human-centered design
principles and fosters creativity. Ultimately, our objective is to enhance human
creativity and productivity through Al systems.
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2.3 Style-Aware Sketch-to-Code Conversion
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Fig. 2.8 Overview of the method. (1) Commencing from the sketch of a webpage, a
segmentation of its interface is conducted. (2) The structure and textual elements of the
chosen component are deduced (Section 2.3.1). (3) Style characteristics of the reference
image are extracted and incorporated into the structural features of the sketch. Subsequently,
a parser generates the final code alongside the rendering of the component (Sections 2.3.2
and 2.3.3).

The process of converting a sketched interface into computer code involves three
main sub-problems. Initially, it involves understanding the sketch and identifying
the existing elements along with their positions. Next, each identified component
needs to be styled according to a specific reference style. Lastly, the final challenge
is to produce the code for the styled component. The methodology described was
developed using Python 3.8. PyTorch was utilized for implementing the neural
network, PIL and OpenCV for image processing, and Pandas and Numpy for data

processing.

2.3.1 Understanding of Sketches

The process of comprehending the sketch is a task in computer vision that involves
detecting and identifying the components (e.g., buttons, navbars, etc.) and their
relative positions within the sketch of a Web-based GUI. In this task, we have
employed the approach used in Sketch2Code [9], which leverages RetinaNet [56],
a well-known single-stage detector known for its accuracy and speed. RetinaNet
utilizes a feature pyramid network to efficiently detect objects at various scales

and introduces a novel loss function, the focal loss, to address the issue of extreme
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foreground-background class imbalance. This model can predict both the class and
the positional box of the object being detected simultaneously. The same dataset as
in Sketch2Code is used for this task. Additionally, an OCR technique is utilized for

recognizing written words in the sketch.

2.3.2 Automatic Style Transfer

Considering that a Web component comprises various visual elements, we divide the
task of extracting the style from the chosen reference image into two sub-problems:

color extraction and text style selection.

Color Extraction. The most prominent colors from the selected reference image
are identified using a median cut-based clustering approach. This technique involves
organizing data with multiple dimensions into sets by iteratively dividing each data
set at the median point along the longest dimension, particularly the color dimensions

in the image (i.e., the RGB channels in a colored image).

Text Style Selection. To determine the text style that best matches the selected
reference image, we leverage the feature extraction capabilities of Convolutional
Neural Networks (CNNs). Specifically, with a list of preferred fonts, both the image
and a sample sentence for each font are fed through a pretrained Visual Geometry
Group (VGG) neural network. The font that minimizes the cosine similarity between
the two hidden representations is then selected. In mathematical terms, for a model
S, a reference image i € I, and a set of fonts F, the j-th style f € F is chosen such
that

j=argminS(i) x S(f;) (2.1)
J

where S(i) and S(f;) represent the final layer activation values of the network.
The above equation guarantees that the chosen reference image and the font share
some visual similarity, or at least that the similarity is maximized among the selected

fonts.
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2.3.3 Code Generation and Ul Reconstruction

After obtaining the customized component from the previous step, it is processed
once more through a multi-headed VGG Convolutional Neural Network [57] to
analyze its characteristics, both in terms of structure and style. The outcome is then
forwarded to an external parser, along with the corresponding box positions derived
from the sketch understanding phase (Section 2.3.1), in order to generate the ultimate
code representation of the GUI. The external parser correlates the features deduced
from the CNN with CSS attributes for style characteristics and HTML attributes
for structural components. Eventually, an algorithm integrates them into a website

template to produce the final interface.

2.3.4 Preliminary Results

:‘A:/
4

”~

News Commettee Contact

Fig. 2.9 Results of the automatic style transfer algorithm and the UI reconstruction. The
sketch above is transformed into the respective navbars with styles matching the images on
the sides.

In order to validate our approach, our experiments primarily focus on verifying
the accurate prediction of the structure of the sketch using both synthetic and real
sketches, obtaining correct visual feedback from the extraction of dominant colors
from the reference image, and confirming the robustness of the selected text font
that closely matches the style of the reference image across different sentence
samples. As the segmentation and reconstruction techniques were inherited from
and previously validated by Sketch2Code [9] and UICode [58], we do not discuss

their performances. The experiments were carried out using Google Colab.

Dataset To assess the effectiveness of the style transfer method, we constructed
a synthetic dataset of 3,000 navigation bars (navbars) sketches. These navbars can
contain a maximum of 5 items floating left and 3 items floating right, and the goal
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of the structure prediction model is to determine the number of right and left items.
While this focus on a single component type limits the diversity of the dataset, it
provided a controlled environment to validate the core style transfer mechanism
before scaling to more complex layouts. Additionally, we fine-tuned the resultant
model using 30 real navbar sketches to evaluate its performance in a real-world
scenario.

Measures The efficacy of our proposed method is based on three primary objec-
tives.

1. Itis necessary for the convolutional neural network to accurately classify the
structural attributes of the sketched component for subsequent parsing into
code.

2. The color extraction algorithm should provide accurate visual feedback on its
ability to extract the correct colors and select the appropriate font based on the

reference image.

‘When it comes to the first objective, the classification performances of the
CNN on both the synthetic and real sketches dataset are assessed. This involves the
network correctly inferring the content features of a given sketch. The evaluation of
its performance is based on the accuracy of the prediction compared to the ground
truth. Regarding the second objective, the performances of the color extraction algo-
rithm are visually evaluated based on the obtained results. A more comprehensive

evaluation involving designers is left for future work.

Experiments To assess the performance of the CNN for the sketch structure
prediction, the synthetic sketch dataset was divided into 2,500 training samples and
500 test samples. The network was trained for 20, 30, and 50 epochs using pretrained
weights from ImageNet [59], followed by fine-tuning on 50 real sketches and testing
on 20 of them.

As shown in Table 2.5, the convolutional network’s performance in distinguishing
the structural features of the sketched component achieved very good results with
a top 0.732 accuracy over the real sketches set after 50 epochs of training. The
dominant color extraction algorithm’s performance has been visually assessed on 10

reference images, demonstrating qualitative optimal results.
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Epochs ‘ Synthetic Sketches Real Sketches

20 0.898 0.701
30 0.909 0.725
50 0912 0.732

Table 2.5 Accuracy in predicting the structural characteristics of the synthetic and real
sketches

2.3.5 Summary and Future Work

This chapter introduces an approach to assist designers in creating webpages from
a sketch while incorporating style elements. The method comprises three key
components: a deep learning architecture for segmentation and classification, a style
extraction process from a reference image, and a parsing algorithm. One of its
strengths is its full integration and ease of adaptation to various sketch types across
different domains. Notably, it represents the first model known to enable designers to
automatically customize the style of a sketched component using a chosen template.
Furthermore, it is highly modular, allowing for individual module changes without

necessitating modifications to preceding components.

Our methodology does have certain limitations that could be addressed in future
studies. Firstly, the style and content characteristics of components are manually
crafted, restricting the model’s ability to generalize beyond the initial sketch spec-
ifications. This approach was chosen to achieve optimal performance given the
intricate nature of style specifications in web components. A potential avenue for
future research involves implementing techniques that facilitate visual style transfer
using language models instead of procedural methods, as language models have
demonstrated the capacity to generalize beyond manually crafted features in this
context, as evidenced by Beltramelli [8] and Chen et al. [58]. Secondly, the current
automatic style transfer method is confined to predefined stylistic attributes, such
as colors and fonts. In real-world web design scenarios, numerous other stylistic
attributes need to be considered, including shadows, borders, and the responsiveness
of elements. Addressing these complexities to enable the widespread application
of the proposed method in practical settings may present challenges. Therefore,
future research efforts should concentrate on developing automatic models capable

of managing such intricate stylistic considerations in a comprehensive manner.
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Finally, the suggested approach must undergo testing with a varied range of
sketches and web components, and be integrated into a design tool that enables
designers to choose different styles for their sketches. Subsequently, this tool will
be subject to evaluation through user studies to determine the effectiveness of the

overall strategy.

In conclusion, the translation of user interface sketches into code is approaching
implementation in practical applications, and our research represents an initial effort
to enable automatic stylization of GUI elements through the utilization of machine
learning methods, aiming to provide a more comprehensive approach to support
designers in streamlining this laborious aspect of their work.

2.4 Dynamic Behavior Specification in Sketches

In the comparative study by Silva et al. [60], the concept of behavior specification is
defined as the capability to incorporate dynamic behaviors into prototypes. ‘“Behavior”
is characterized as a collection of states that prototypes can transition between. While
most prototyping tools primarily support the creation of static mock-ups, only a few

model the dynamic behavior of the prototype.

As outlined in [60], the primary approaches for specifying the prototype’s behav-
ior involve setting hotspots on images and managing events on widgets. Hotspots
refer to highlighted areas overlaid on the prototype sketch to capture user-triggered
events!. Designers typically need to establish one hotspot for each interactive part
of the interface. However, a limitation of this method is that hotspots are linked
to graphical regions based solely on their coordinates, rather than semantically
connected to the graphical elements depicted in the image.

Wireframe tools utilize widgets for constructing the interface’. These event
handlers typically define the action needed to trigger an event and the subsequent

behavior it initiates.

Examples of tools that support wireframe interactions include Balsamiq®, Ac-
tiveStory Enhanced [61], SILK [62], and DENIM [63]. Additionally, tools like

Thttps://marvelapp.com/
Zhttps://pidoco.com/en
Shttps://balsamiq.com
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AppSketcher* and JustinMind® provide capabilities for specifying conditions, modi-
fying properties, and utilizing variables; Appery.io® and ScreenArchitect’ also offer

the ability to program code.

Our methodology characterizes the dynamic nature of the GUI from the sketch
itself by employing a specific set of symbols. It enables wireframe interactions
without requiring the addition of widgets or hotspots at a later phase. Additionally,
as far as we are aware, the suggested technique represents the initial effort to directly

model behavior specifications from a sketch via convolutional neural networks.

24.1 Method

This section introduces a technique for automatically creating code from sketches, as
well as a new set of symbols and the corresponding process for representing dynamic
behavior.

2.4.2 Modeling Dynamic Behavior

In order to model the dynamic behavior of the prototype, a group of symbols
representing various dynamic behaviors is introduced. These symbols should be
depicted directly on the sketch and are selected based on the essential dynamic
characteristics identified in the literature, i.e., from [60, 62]. The following group has
been chosen to showcase the feasibility of the model and will be further developed

in upcoming research to encompass a broader spectrum of dynamic behaviors:

Default Selected Element denotes the item that is preselected in the sketched in-
terface. An example of such an item is the “Home” button in a horizontal
navigation bar of a web application.

Dropdown Menu signifies that the element triggers a dropdown menu.

Page Indicator distinctively identifies the sketched interface, e.g., the page destina-
tion of a link.

“https://www.uxplaza.com/appsketcher
Shttps://www.justinmind.com
®https://appery.io
Thttps://www.screenarchitect.com
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Link symbolizes the association between the sketched element and a specified page.

Figure 2.11 presents the four symbols that were introduced, along with their
respective functions, the reasons for selecting the representations, their application,
and an illustration for each symbol. The figure may enhance comprehension of how
the symbols are incorporated into an actual sketch of a GUI.

2.4.3 Generation of Prototype Interface

The process of creating the code for an interface from a sketch can be divided into

three main sub-problems.

Initially, the challenge involves segmenting the sketch based on semantic ele-
ments, such as navbar, list, carousel (Section 2.4.3). Subsequently, for each semantic
component provided, the task is to analyze the structural characteristics of the sketch
and determine the existing symbolic elements and their positions (Section 2.4.3).
Lastly, the final obstacle is to produce the code for the resulting component, consid-

ering the dynamic behavior expressed (Section 2.4.3).

The approach described has been implemented using Python 3.8. The neural
network was developed utilizing PyTorch, image processing with PIL and OpenCYV,
and data processing carried out using Pandas and Numpy.

Interpretation of Sketches

Interpreting a sketch is a computer vision task that involves detecting and recognizing
the components included in a Web-based interface sketch (e.g., buttons, navbars,

etc.) and determining their spatial relationships.

For this purpose, we applied a similar method as Sketch2Code [64], which
utilizes RetinaNet [65], a widely-used single-stage detector known for its accuracy
and efficiency. RetinaNet is capable of predicting both the class and position of
the object being detected simultaneously. The network architecture is illustrated in
Figure 2.10 (1).
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Understanding Components

After segmenting the user interface sketch, we predict the structural characteristics
of the components and identify symbols to represent dynamic behavior.

In particular, as illustrated in Figure 2.10 (2), we employ a convolutional neural
network, customized for each element, trained to categorize the structural character-
istics of the sketched element, for example, in the scenario of a navbar, the quantity
of elements floating left and right. We utilize the identical network to forecast which
(symbol type) and where (in which element) symbols exist. To establish connec-
tions between multiple pages, we utilized the page indicator, i.e., a distinct number,

inscribed on the top right of the sketched page.
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Fig. 2.10 Overview of the method. Starting with one or multiple sketches of interfaces,
in (1) a segmentation of the single sketch into sub-components is performed. Then, for
each component, a convolutional neural network is used to infer its structural and dynamic
properties (2). Finally, with the assistance of a parser, the predicted properties are translated
into the backbone code of the sketched component. (3) depicts the rendered Web element
resulting from the entire process.

WFO  |(OUTRCT | LS




2.4 Dynamic Behavior Specification in Sketches

53

SYMBOL

FUNCTION

MOTIVATION

USAGE

EXAMPLE

&

Default selected element.

The symbol has been chosen
for its visual similarity with
an anchor.

The symbol must be drawn
upon the element to be
selected by default.

HOME |1

:

A4

Dropdown menu

The symbol has been chosen
because it is the standard
representation of the
dropdown menu in
literature.

The symbol must be drawn
below the element that
activates the menu

SERVICES \
4
RENT

NOTE: the symbol can be any

The number must be written
inside a square in the upper

o

motion.

unique number to which the

. < )
fagslidicatoy number. left of the sketched page Hm@ PROGRe
that it uniquely identifies
The symbol must be drawn o,
The symbol has been chosen | above the button and should
——? Link for its visual meaning of be followed by the page M é \ng

link points to.

Fig. 2.11 The proposed set of symbols to model dynamic behavior in sketch prototypes: The
default selected element symbol is used to model the item that is selected by default in the
given interface; the dropdown menu symbol indicates that the element opens a dropdown
menu; the page indicator symbol is used to link together different page sketched by the
designer; the link symbols, links a sketched element into an indicated page.

Code Generation

After considering the structural properties of the component, as well as the type
and positioning of symbols used to represent the dynamic behavior, we then move
on to creating the code for the backbone using a parsing function. Figure 2.10 (3)

illustrates the final rendered component.

2.4.4 Experiments

We aim to validate that our approach accurately produces the code for the navbar
with dynamic behavior, assess the structural characteristics of the sketch, and identify
symbols representing dynamic behavior correctly. Due to the absence of a dataset of
hand-sketched web interfaces, we initially train our method using a synthetic dataset
and subsequently fine-tune it using a set of 50 real sketched navigation bars (navbars).
Since the segmentation and reconstruction techniques were previously validated in
Sketch2Code [66] and UICode [67], we do not provide their performance evaluation.
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Dataset To evaluate the efficacy of our method, we created a synthetic dataset
consisting of 3,000 sketches of navbars. Each navbar may contain a maximum of
five items aligned to the left and three items aligned to the right. The symbols used
to represent dynamic behaviors included a default selected element, multiple links,
multiple dropdown menus, and a unique page indicator. The goal of the structural
prediction model is to predict the number of items on the left and right. This
deliberate focus on a single, common component allowed for a controlled evaluation
of the symbol recognition and behavior generation logic. Additionally, we fine-
tuned the model using a set of 500 real sketched navbars to assess its performance
in a more realistic setting. The real sketches dataset exhibits greater variability
compared to the synthetic dataset, featuring hand-drawn lines, overlapping elements,

and mispositioned components.

Measures The Convolutional Neural Network (CNN) should accurately classify
the structural attributes and the type and position of symbols within the sketched
component to facilitate conversion into code. We use accuracy as the primary

performance metric.

Experiments To assess the effectiveness of the CNN in the sketch structure pre-
diction task, the synthetic sketch dataset was divided into 2,500 training samples and
500 testing samples. The network was trained for 20, 30, and 50 epochs using pre-
trained weights from ImageNet [68], followed by fine-tuning on 400 real sketches
and testing on 100 sketches.

Epochs \ Synthetic Sketches Real Sketches

20 0.991 0.968
30 0.995 0.973
50 0.998 0.982

Table 2.6 Accuracy Results over Synthetic and Real Sketches Datasets

According to the data presented in Table 2.6, the convolutional network’s ability
to differentiate the structural characteristics of the sketched component yields excel-
lent outcomes, achieving a top accuracy of 0.982 on the actual sketch dataset after 50

training epochs. This indicates the network’s proficiency in identifying the sketched
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component’s structure, which can then be translated directly into code, showcasing

the potential of this approach for practical applications.

Dataset Default Dropdown Link Page
Selected Menu Number

Synthetic Sketches 0.995 0.996 0.989 0.992

Real Sketches 0.987 0.991 0.972 0.989

Table 2.7 Accuracy Results for each symbol

Moreover, for a deeper insight into the numerical outcomes of our approach, the
network’s performance in identifying each of the proposed symbols is examined
in Table 2.7. This analysis could serve as a basis for potential modifications in the

designs of certain symbols to enhance accuracy.

According to the findings presented in Table 2.7, the symbol “Page Number”
stands out as the most readily identifiable by the classifier, whereas “Dropdown
Menu” and “Default Selected Elements” exhibit similar performance. Conversely,
“Links” is the symbol with the lowest recognition rate, likely due to occasional
overlap with text in some instances. Future efforts may involve refining its design or

positional specifications to yield improved outcomes.

2.4.5 Summary and Future Work

In this chapter, a technique is introduced to aid designers in creating web pages
from sketches, while illustrating the dynamic behaviors of these pages. The method
comprises four key components: a predefined set of symbols for sketching web
pages; a deep learning framework for segmenting sketched pages into components;
a classification model for deducing the structural attributes of the components and
identifying symbols representing dynamic behaviors; and a parsing model that
leverages the network’s output to produce the final code. Notably, this method is
fully integrated and easily modifiable for a variety of sketches in different fields. To
the best of our knowledge, it is the initial approach enabling designers to capture
the dynamic behavior of sketches within sketch-to-code translation algorithms by

utilizing deep learning methodologies.

While the proposed technique offers significant advantages, there are certain

limitations that could be resolved in future studies. Particularly, the structural
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attributes of the components are manually crafted, restricting the model’s ability
to generalize beyond the sketching specifics. This design choice is deliberate to
achieve accurate outcomes owing to the intricate nature of structural specifications
in web components. Subsequent research will focus on incorporating methods
enabling code generation using language models instead of procedural techniques,
as language models can generalize beyond manually crafted features in this context,
as demonstrated by Beltramelli [8].

Secondly, the representation of dynamic behavior is constrained to a subset of
the dynamic behavior of an authentic web application. Subsequent investigations
should concentrate on improving the capabilities of our technique to represent a
broader spectrum of dynamic behaviors. Finally, the illustrated technique should
undergo testing with a varied assortment of sketches, hand-drawn symbols, and web
components, and should be integrated into a designer tool. Such a tool will then be

assessed in user studies to evaluate the effectiveness of the overall approach.

In conclusion, the conversion of user interface sketches into code is moving closer
to implementation in practical applications, and our work takes initial steps towards
enabling designers to model the dynamic behavior of web interface elements. This
is achieved by utilizing machine learning methods to provide a more comprehensive

approach that can aid designers in simplifying this laborious aspect of their work.

2.5 Conclusion

Our investigations into design-to-code translation reveal both significant advance-
ments and inherent limitations in current approaches. The transformer-based architec-
tures substantially outperform traditional LSTM models in controlled environments,
with both Pix2Struct and FerretUI-Gemma2B achieving near-perfect BLEU scores
on benchmark datasets. However, performance degrades markedly on real-world
interfaces—a discrepancy that highlights the fundamental gap between synthetic
training environments and the complex multivariate relationship between visual

design and implementation code.

The style-aware and behavior-specification extensions address critical dimen-
sions overlooked in previous research. Style transfer through reference images

enables the preservation of designers’ aesthetic intentions without requiring explicit
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coding knowledge, while symbolic annotations for dynamic behaviors bridge the
longstanding divide between static mock-ups and interactive prototypes. These
approaches fundamentally reposition the sketch-to-code pipeline from a structural

translation tool to a more complete design expression medium.

This work exposes a critical tension in automated interface generation: between
the deterministic nature of code generation and the inherently under-constrained
nature of design. A single visual representation can map to numerous valid imple-
mentation patterns, each with different implications for performance, maintainability,
and browser compatibility. Future systems must therefore move beyond simple
input-output mapping to consider the sociotechnical context in which designs ex-
ist—incorporating awareness of design patterns, accessibility requirements, and

cross-platform considerations.

The persistent performance gap on real-world websites suggests that hybrid
approaches may prove most effective in practice. Rather than attempting complete
automation, future systems might serve as augmentative tools that accelerate specific
aspects of the implementation process while preserving human oversight for critical
design decisions. This partnership model aligns with the observed strengths of our
approach in capturing structural and stylistic elements while still struggling with

complex responsive behaviors and cross-browser optimizations.

As design tooling evolves, the boundaries between design and implementation
will continue to blur. Our contributions provide mechanisms for expressing design
intent more comprehensively in early sketches, potentially reshaping development
workflows to emphasize iterative refinement over sequential handoffs. The true value
of these approaches lies not merely in automation efficiency but in enabling more
fluid expression of creative intent across the traditionally siloed domains of design

and development.

It is also important to situate this work in its historical context. The research
presented in this chapter was conducted prior to the widespread availability and
viability of large-scale generative models (LLMs) for such tasks. Consequently, the
methods relied on established neural architectures (e.g., LSTMs, early transformers)
that were considered state-of-the-art at the time. The landscape has since shifted
dramatically with the emergence of powerful commercial and open-source GenAl
tools, many of which now offer sophisticated prototyping and code generation
capabilities that build upon the foundational concepts explored here. Acknowledging
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this rapid evolution is crucial for understanding both the contributions and the

limitations of this earlier work.



Chapter 3

Empowering Educators: AI-Assisted
Tools for Instructional Design

Publication notice. Early versions of the approaches presented in this chapter
appeared in ACM Learning @Scale’24 (“Towards Educator-Driven Tutor Author-
ing: Generative Al Approaches for Creating Intelligent Tutor Interfaces”) and are

currently being extended in an article under submission.

3.1 Introduction

Intelligent Tutoring Systems (ITSs) provide personalized and adaptive education by
offering practice problems tailored to students’ expertise levels along with appropri-
ate feedback during problem-solving. Research by Bloom et al. [24] demonstrated
that students receiving one-on-one tutoring achieve significantly better learning
outcomes compared to those in traditional lecture-based instruction. By tracking
individual learner knowledge and skills, ITSs can customize problem sequences to
improve learning efficiency, enabling tutors to serve many students simultaneously
and address supplemental instruction needs in large classes [69]. Multiple studies
confirm that ITSs effectively enhance learning outcomes [25].

A key pedagogical approach employed by effective I'TSs is scaffolding, which
encourages students to extend their reasoning processes, resulting in higher task

completion rates compared to conventional answer-based systems lacking supportive
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features [70]. These effective pedagogical techniques frequently lead to students
successfully completing learning tasks, while systems based solely on final answers
tend to cause students to abandon tasks midway through the learning process [70].
Several meta-analyses indicate that certain ITSs are more effective in supporting
student learning than other computer-assisted instruction systems or traditional
human teaching in large classes [71, 72, 70].

Despite their proven effectiveness, widespread adoption of ITSs has been hin-
dered by the complexity of their development, which typically requires specialized
programming and design expertise [26]. This complexity prevents non-technical
educators from creating customized tutors [28], limiting development to technical
experts like researchers and software developers. The creation of effective ITSs in-
volves not only domain knowledge but also interface design skills that most educators
lack.

To democratize the creation of ITSs and empower educators in their development,
various authoring tools and platforms have emerged. Notable examples include the
Cognitive Tutor Authoring Tools (CTAT) [28], which enable tutor creation through
demonstration of problem-solving steps and specification of pedagogical rules;
the Authoring Software Platform for Intelligent Resources in Education (ASPIRE)
[73], which allows domain experts to develop constraint-based tutors; and machine
learning approaches like SimStudent [74, 75] and the Apprentice Learner System

[76], which have been applied to model student learning and support tutor authoring.

While these tools help mitigate the challenges of tutor model creation, they
predominantly focus on developing the domain model and pedagogical strategies
while assuming educators possess the necessary interface design skills. The Ap-
prentice Tutor Builder (ATB) [29], for instance, offers a drag-and-drop interface for
assembling tutor layouts in row and column formats, enabling educators to itera-
tively develop tutoring models without programming. However, ATB still implicitly
assumes that educators can effectively design interfaces without specific training
or support. Research demonstrates that interface and instructional design requires

specialized skills [27] that most educators lack.

Recent work by Cald and Maclellan [77] began to address this gap by using
generative Al to translate teaching requirements directly into ITS interfaces. Their
approach leverages prompt engineering and domain-specific language to generate
interfaces based on educators’ specifications. While their method shows promis-
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ing time reductions compared to drag-and-drop builders, it lacks integration with
established ITS practices, relies heavily on prompt specification (challenging for
non-expert users [78]), and has not been validated with actual educators. The gen-
eration process occurs without educator supervision, exposing the process to the

limitations of prompt writing.

The recent emergence of generative Al applications has created new possibilities
for interface development support across domains. Large language models (LLMs)
have been used to interact with Uls through natural language [79], generate CSS
properties based on design objectives [23], and create functional UI prototypes
through prompted responses [80]. These developments align with Nielsen Norman
Group’s concept of outcome-oriented design, where users focus more on setting
parameters and constraints for Al systems than on specifying individual design details
[81]. Similarly, Shneiderman’s research on Human-Centered Al [82] emphasizes
designing systems that leverage Al capabilities while ensuring users maintain control
and understanding of the process.

The integration of generative Al with intelligent tutoring systems has mostly
focused on using LLLMs as substitutes for expert tutor models, providing immediate
feedback, continuous availability, and enhanced flexibility compared to traditional
rule-based tutors [83, 84]. LLMs have demonstrated effectiveness in solving ques-
tions across various subjects [85-88], identifying and correcting mistakes in student
work [89-91], and improving knowledge tracking and content customization [92—
95].

However, significant limitations have been identified in using LLMs directly as
tutoring agents, particularly regarding reliability [96], user interactions [97, 98], and
fairness in educational settings [99, 100]. These challenges highlight the importance

of keeping educators involved in the tutoring system development process.

This chapter presents two complementary approaches that take a different direc-
tion by leveraging generative Al not as the primary tutoring model but as a design
assistant that helps educators create effective tutor interfaces. First, we introduce a
system that enhances the Apprentice Tutor Builder with generative Al capabilities
to produce complete interfaces or specific components based on educators’ require-
ments. This approach incorporates design constraints to ensure generated interfaces
are effective and visually appealing while maintaining educator control through

options for whole-interface or component-specific generation.
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Building on this foundation, we then present an advanced approach that breaks
down high-level teaching requirements into pedagogical steps before generating
multiple interface options for preference-based refinement. By decomposing re-
quirements into structured instructional actions (e.g., concept introduction, guided
practice, feedback loops) derived from established ITS strategies [70], this approach
ensures alignment with effective pedagogical practices while allowing educators to
maintain control over the tutoring process. Drawing inspiration from DirectGPT
[101], we introduce a preference-driven Ul refinement method that enables educators
to select preferred elements from diverse Al-generated drafts, guiding the design
process without requiring expertise in UI design or complex prompt engineering.

This approach aligns with the UI design exploration-exploitation process [102],
balancing creativity and discovery with optimization. During the exploration phase,
designers explore a wide range of options, while in the exploitation phase, they
refine the most promising candidates. Our Al-assisted tool makes this typically
time-consuming and expertise-requiring process accessible to educators without
technical background, enabling them to engage in structured, iterative design guided
by their pedagogical expertise.

Through preliminary evaluations and a user study with eight K-12 educators,
we demonstrate that these approaches significantly enhance both interface quality
and user satisfaction compared to traditional methods, without extending design
time. The implications of our work extend beyond intelligent tutoring systems to the
broader field of end-user development, potentially accelerating the democratization of
Al-assisted design tools in education and enhancing the accessibility of personalized
learning technologies.

3.2 Generative AI-Enhanced Tutor Builder for Rapid
Interface Prototyping

Our approach to enhancing the ATB with generative Al capabilities comprises three
main components: a Domain Specific Language (DSL) for interacting with the LLM,
prompt engineering to direct the generation process, and two tiers of interaction for
adaptability and supervision.
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We introduce a concise DSL for illustrating tutor interface structures, encom-
passing basic elements like title [value] for specifying the tutor’s title, row and
column for indicating horizontal and vertical layouts of elements, 1abel [value]
for defining text labels, and input [placeholder] for specifying input fields with
optional placeholder text. These components can be combined to create intricate
tutors. The DSL representation facilitates effective communication with the LLM
and guarantees that the resulting HTML output complies with the desired template,
thereby avoiding inconsistencies and deviations from the intended design and aes-
thetics that could occur if a tutor’s HTML interface were directly generated from the
LLM.

To assist the generative model in developing suitable tutor interfaces, we con-
structed a prompt comprising distinct sections. The System Description outlines
the desired tutor interface, stressing the significance of a clear problem statement
and a step-by-step resolution pathway to align with educational goals. The Format
Explanation elucidates the DSL format utilized for representing the tutor interface
layout, enabling the model to generate layouts that adhere to the specified format.
The Design Instructions detail design principles, such as segregating input ele-
ments, organizing elements in rows and columns, and refraining from incorporating
interactive buttons in the layout. The Task Instruction directs the model to con-
vert a comprehensive tutor description into a concise DSL representation, ensuring
comprehension of its primary goal and generation of the intended output format.
Lastly, a collection of illustrative Examples functions as a guide for the model on

implementing the aforementioned principles in diverse scenarios.

We present two levels of interface generation tailored for different stages of
design. Initially, Interface Generation facilitates the creation of a complete tutor
interface layout based on a detailed description, serving as the foundation for tutor
design. This enables users to commence from a generated user interface that adheres
to the design principles outlined in the prompt. We posit that a refined user interface
is more likely to adhere to these principles. Moreover, interface generation may
prove particularly beneficial for users seeking an automated approach or facing time
constraints. Conversely, Component Generation produces designs for specific
and reusable interface elements, such as widgets for equations or other data input
formats. This feature allows users to develop interfaces that closely align with their
specific objectives on a smaller scale, while still capitalizing on the efficiency and

consistency offered by the generative model.



64 Empowering Educators: Al-Assisted Tools for Instructional Design

Example Workflow To illustrate, consider an educator designing a simple algebra
tutor. They might provide the high-level requirement: “Create a tutor to solve the
linear equation 2x + 5 = 15. The student needs to first subtract 5 from both sides, and
then divide by 2 to find x.” The Al-enhanced builder would process this and, using the
Interface Generation feature, produce the corresponding DSL: title[Solving 2x
+ 5 = 15] column{ row{ label[Step 1: Subtract 5 from both sides]
input[2x = 10] } row{ label[Step 2: Divide by 2] input[x = 5] } }.
This DSL is then instantly rendered as a clean, structured interface in the ATB, which

the educator can further refine.

Our Al-enhanced tutor interface constructor is built on top of the existing ATB
interface, utilizing an HTML/JavaScript front-end and a Flask backend. We employ
GPT-4! as the language model engine for the generation process. The interface and

component generator are seamlessly integrated into ATB’s user interface as toolbar

widgets.
Interface Ty ‘ Time (s) ‘ Keystrokes
nterface e
P ‘ Classical AI-Enhanced Reduction ‘ Classical AI-Enhanced Reduction
Simple 187 143 184 126
Complex 372 116 141 74

Table 3.1 A Comparison of the Time and Keystrokes Needed for Constructing Tutor Inter-
faces: Classical versus Al-Enhanced

Initial Assessment

In order to assess the effectiveness of the Al-enhanced Apprentice Tutor Interface
Builder, we conducted a small-scale comparison with a previous iteration. The
performances of four team members were compared against those of high-expertise
individuals as reported in the ATB paper. While this comparison is not strictly
controlled, we consider the high level of expertise of the ATB participants to sig-
nificantly impact their performance, thus making it a suitable reference point for
initial comparison. Additionally, to validate our findings and address issues related to
comparing diverse participant groups, we utilized the Keystroke-Level Model [103].

This model assesses interface efficiency by calculating the minimum number of

Iversion gpt-4-0613
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Fig. 3.1 Illustration of our Al-Enhanced Tutor Builder System: Educators provide input re-
quirements (A) which inform the automated generation of a draft tutor interface (B), followed
by the educator’s hands-on refinement through component generation and direct manipulation
(C), visualizing the integration of generative design and educator-driven customization.

keystrokes needed to complete tasks, offering a quantitative measure of user interac-

tion efficiency.

We chose the Keystroke-Level Model (KLM) over other evaluation methods
like the NASA-TLX because our primary goal was to measure and compare the
task efficiency of two different design methods when used by experts. KLM is
ideal for predicting the time an expert user will take to accomplish a task without
errors, as it breaks down the process into atomic physical and mental operators. In
contrast, NASA-TLX measures subjective cognitive workload, which, while valuable
for assessing user experience, is less suited for a direct, objective comparison of
performance speed for a well-defined construction task. Given our focus on the
efficiency gains of a novel authoring method, KLLM provided a more direct and

appropriate quantitative measure.

Evaluation Setup Participants were tasked with designing the same two interfaces
featured in a previous ATB assessment [29]: a basic interface for a sequential problem
and a more intricate interface for an arithmetic equation solver, both depicted in
Figure 3.2. The time taken to complete each task was recorded to evaluate the

efficiency of the two methods.
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Fig. 3.2 This image depicts the two interfaces utilized in the assessment: On the left, the
’Simple’ interface, created for sequential problem-solving tasks, provides a user-friendly
design with basic input fields. On the right, the ’Complex’ interface is customized for an
arithmetic equation solver, showcasing a more sophisticated design with numerous input
fields and operational functions for equation processing.

Results The use of Al assistance consistently decreased the time required to

construct both simple and complex interfaces, as indicated in Table 3.1.

Interestingly, there was a more notable improvement in efficiency in the case
of the complex interface, with a 68% decrease in time compared to the classical
approach. This can be attributed to the complex interface, designed for an arithmetic
equation solver, necessitating a more advanced layout featuring multiple input fields
and operational functions. In this context, the Al assistance likely played a more
significant role as users could utilize it to streamline the generation of equation

components and layout elements more effectively.

Conversely, the efficiency enhancement for the simple interface was lower but
still significant, at 23%. This lesser improvement can be elucidated by users having
to manually input all the labels in the simple interface, a step that was not required for
the complex interface. This manual input likely counteracted some of the efficiency
benefits provided by the generative Al capabilities. Additionally, while the decrease
in absolute keystrokes may not be as substantial as the time saved, it still contributes

to the overall enhancements in efficiency.

Limitations Although this small-scale comparison offers promising insights into

the potential of generative Al to enhance the efficiency of tutor interface design,
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especially for complex tutors, further extensive studies involving diverse participants,
tasks, and comprehensive feedback are essential to validate these findings and gain a

deeper understanding of the tool’s impact on user satisfaction and the design process.

3.3 Pedagogical Step Decomposition and Preference-

Driven Ul Refinement

EXPLORATION EXPLOITATION

— - /\

Fig. 3.3 Visual depiction illustrating how the AI-Assisted Tutor Builder facilitates the
exploration-exploitation design cycle. The left side (Exploration) illustrates educators
exploring possibilities through pedagogical step refinement (2) and multiple Al-generated
designs (3). The right side (Exploitation) showcases educators exploiting preferred design
elements through preference selection (4) and final refinement (5), establishing an efficient
workflow for non-expert users.
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Design Objectives

Our methodology is rooted in three fundamental design objectives: Pedagogical
Alignment, Guided Flexibility, and Design Process Reflection. These objectives cater
to the necessity of pedagogically appropriate interfaces, a harmonious blend of Al
support, and accessible design procedures for educators lacking in-depth technical

knowledge.

Pedagogical Alignment This objective ensures that both the design procedure
and resultant interfaces adhere to educational principles and methodologies. It is
implemented through the automatic breakdown of overarching tutoring objectives
into organized, pedagogical phases, aligning with core ITS principles outlined by
VanLehn [70]. This alignment serves a dual purpose: guaranteeing that the resulting
tutoring interface inherently embodies effective pedagogical principles and offering
a structured blueprint for interface development, where each decomposed phase

informs specific Ul components and their interrelations.

Guided Flexibility This objective harmonizes Al-driven automation with user
empowerment and customization choices. The Al system formulates initial steps,
allowing educators to precisely synchronize these steps with their pedagogical goals.
The Guided Flexibility objective ensures that educators retain authority over key
aspects of the tutoring process, while Al support can be utilized to explore alternate
strategies and bolster overall coherence. This strategy aligns with Shneiderman’s
Human-Centered Al principles [82], ensuring educators maintain command over
the process. By rendering the reflection of intricate design processes accessible,
we strike a balance between Al-enabled automation and educator input, addressing
the drawbacks of fully automated systems [77] that might overlook the specific

requirements and preferences of novice users.

Design Process Reflection This objective ensures that users, regardless of their
level of expertise in design, can partake in a structured design process that mirrors
professional methodologies. By transforming complex design paradigms into an
accessible, interactive framework, we enable educators to actively engage in the

design process without the need for advanced skills. This objective is rooted in
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the exploration-exploitation paradigm [102] and simplifies intricate design decision-
making through Al-guided assistance, making it user-friendly for individuals without
design backgrounds. It facilitates the exploration of various design possibilities and
the refinement and exploitation of preferred design elements to customize the final

interface to satisfy both pedagogical and aesthetic demands.

AlI-Assisted Tutor Builder

In order to tackle the challenges in ITS development, we have introduced an Al-
assisted tool that assists educators in a systematic manner to develop personalized
tutoring systems. Our method follows a structured exploration-exploitation design
paradigm (Figure 3.3) to lead educators through the process of creating interfaces.
The left side of the workflow facilitates exploration by breaking down pedagogical
aspects and offering various design options, while the right side supports exploitation
by refining preferred elements with guidance. This method, which is both structured
and flexible, makes intricate interface design procedures accessible to educators

without a technical background.

Al-Assisted Tutor Builder Al-Assisted Tutor Builder

Fig. 3.4 (Left) Educators can enter unstructured problem descriptions in natural language
through the requirements input interface (1), with options to advance to pedagogical steps (2)
or return to previous stages (3). (Right) The pedagogical steps refinement interface provides
various control options, such as locking critical steps (4), deleting unwanted steps (5), adding
new steps (6), proceeding without drafting (7), generating tutor drafts (8), and regenerating
steps while keeping locked content (9). This structured workflow helps educators move from
high-level goals to concrete pedagogical steps.
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Requirements Elicitation The initial phase of our system, as depicted in Figure
3.4, is the requirements elicitation section. This interface enables educators to input
their high-level tutoring objectives and problem requirements using natural language.
By offering an unrestricted input method, we empower educators to communicate
their intentions without being limited to predefined formats or structures. This
design decision is essential for ensuring the system’s adaptability to a wide range
of tutoring objectives in various subject areas, addressing a significant drawback of
prior research that often concentrated on mathematical tutoring [77]. The flexibility
of natural language input aligns with our aim to make the system user-friendly for
educators from diverse fields without necessitating extensive technical expertise or

domain-specific formatting.

Pedagogical Step Decomposition and Refinement After capturing the initial
requirements, our system utilizes GPT-4 to break down these high-level objectives
into specific, sequential pedagogical steps. This breakdown is illustrated in Figure
3.4. Each step is presented as an editable text field, allowing educators to adjust,
remove, or insert steps as required. An important aspect of this interface is the
capability to “lock™ specific steps, denoted by a lock icon beside each step. By
locking a step, educators indicate to the system that the step is crucial and should
be retained in any subsequent iterations. This implementation directly supports
our design objective of Guided Flexibility, striking a balance between Al-driven

automation and educator control and customization choices.

The interface also contains buttons for “Regenerate” and “Generate Tutor Design.”
The “Regenerate” feature instructs GPT-4 to produce new steps for any unlocked
items while keeping the locked steps unchanged. This enables educators to investi-
gate different decompositions while retaining essential aspects of their pedagogical
framework.

Interface Generation and Exploration When the “Generate Tutor Drafts” button
is clicked, our system employs GPT-4 to generate various interface versions based
on the refined pedagogical steps. These versions are displayed in a gallery format, as
depicted in Figure 3.4. This gallery empowers educators to explore diverse design

options without the need for extensive Ul design knowledge. Each interface iteration
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in the gallery is interactive, allowing educators to visualize how different layouts and

components might operate in real-world scenarios.

Preference Selection and Refinement Figure 3.5 illustrates our innovative prefer-
ence selection interface. This interface enables educators to indicate their preferences
for specific elements across the generated designs. Educators can “pin” elements
they want to keep in the final interface, denoted by a pushpin icon. These pinned
elements are ensured to be included in the final design. Moreover, educators can
“like” elements, indicated by a heart icon, to show a preference for their inclusion.
The system strives to integrate liked elements into the final design, unless they
conflict with the pinned elements. This preference-driven approach supports our
Design Process Reflection objective by allowing educators to explore multiple design

choices simultaneously.

Final Refinement with Traditional Tools After the stage of preference selection,
the final interface design is produced by our system, taking into account the elements
and preferences selected by the educator. As illustrated in Figure 3.5, educators can
utilize conventional drag-and-drop tools to enhance this design further. This ultimate
phase enables precise adjustments to the interface, guaranteeing that educators

maintain complete authority over the final outcome.

Example Workflow For instance, an English teacher aiming to build a tutor
for identifying metaphors could start with the requirement: “A tutor that teaches
students to identify metaphors in sentences.” The system would decompose this
into pedagogical steps like: “1. Define what a metaphor is. 2. Show an example
of a sentence with a metaphor. 3. Ask the student to identify the metaphor in a
new sentence. 4. Provide feedback.” The teacher could then lock the definition and
feedback steps but regenerate alternatives for the examples. From the refined steps,
the system would generate several draft interfaces in the gallery. The teacher might
‘pin‘ the instructional text from one draft and ‘like* the input field style from another,

leading to a final, refined interface that combines their preferred elements.
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Al-Assisted Tutor Builder Al-Assisted Tutor Builder

Express preferences by direct
manipulation

Fig. 3.5 (Left) The gallery of interface drafts shows multiple Al-generated layouts (1) with
an option to create more variants (2). (Right) The interface for selecting preferences allows
educators to directly adjust interface elements (3), with options to fix elements for guaranteed
inclusion (4), prefer elements for potential inclusion if no conflicts exist (5), and make final
layout choices (6). This two-pane view lets educators explore various design possibilities
while retaining control over the ultimate interface composition.

Technical Implementation

Our Al-Assisted Tutor Builder was developed by combining JavaScript for the front-
end and Python with Flask for the back-end. The foundation of our system is based
on prompts tailored for GPT-4,% each created to enhance different functionalities of
our system.

* Tutor Steps Generation Prompt: A prompt for creating a series of high-
level steps for problem-solving. The emphasis is on clarity, conciseness, and

adherence to pedagogical best practices.

* Locked Steps Regeneration Prompt: A prompt for generating new steps
while retaining specific “locked” steps selected by the educator.

* Layout Generation from Steps Prompt: A prompt for producing multiple in-
terface variations based on the refined pedagogical steps. These interfaces are
generated using a Domain Specific Language (DSL) [77], a concise representa-
tion of the tutor interface layout. The prompt provides detailed instructions on
the DSL format (e.g., utilizing row{ }, column{ }, label[], input[]) and design

Zversion gpt-4-0613
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principles (e.g., segregating input elements, preserving equation integrity).
The DSL is translated into HTML code to display the tutor interface.

* Preference-Driven Layout Refinement Prompt: A prompt for creating a
final interface that combines elements from various tutors’ layouts according

to educator preferences.

Representative Prompt Examples To provide a clearer understanding of the
interaction with the LLM, below are illustrative snippets of the prompts used in our

system.

1. Tutor Steps Generation Prompt: System: You are an expert instructional
designer. Your task is to take an educator’s high-level goal for a tutor and break it
down into clear, sequential, pedagogical steps. — User: Create a tutor to teach how
to calculate the area of a rectangle. — Assistant: 1. Introduce the formula for the
area of a rectangle (Area = length x width). 2. Provide a worked example with a
rectangle of length 5 and width 3. 3. Ask the user to calculate the area for a new

rectangle with length 8 and width 4. 4. Provide feedback on the user’s answer.

2. Layout Generation from Steps Prompt (Simplified): System: You are a Ul
designer that generates tutor interfaces using a specific DSL. The DSL uses ‘row*
and ‘column‘ for layout, ‘label[]‘ for text, and ‘input[]° for input fields. Based on
the pedagogical steps provided, generate a DSL representation. — User: Steps: 1.
Ask for the length. 2. Ask for the width. 3. Display the area. — Assistant: column
row label[Enter length:] input[length] row label[Enter width:] input[width] row

label[The area is:] label[result]

3.3.1 Methodology

In order to investigate the efficiency of Al-supported design tools in developing
interfaces for Intelligent Tutoring Systems (ITS), a comparative user study with
educators was carried out. The methodology employed a mix of quantitative metrics
and qualitative observations to offer a thorough analysis of educators’ interactions
and the effectiveness comparison between conventional and Al-supported design

approaches.
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Fig. 3.6 Comparison of the interface design methods assessed in our research: (Left) Con-
ventional drag-and-drop interface builder offering direct manipulation of interface elements
and layout controls. (Right) Al-Assisted Tutor Builder demonstrating the complete work-
flow from requirements input (1) through pedagogical step refinement (2), exploration of
Al-generated designs (3), preference expression (4), and final manual refinement (5). This
side-by-side presentation highlights the main distinctions in approach between traditional
and Al-assisted methods.

Participants

The participants were selected through a mix of snowball and convenience sampling,
targeting K-12 educators who had an interest in or prior experience with educational
technology. Those interested in participating filled out an initial questionnaire that
included:

* Demographic and background information: age, gender, years of teaching
experience, subject area, and experience with educational technology.

» Technology proficiency: self-rated proficiency with computers and educational

software (novice, intermediate, advanced).

* Interface design experience and Al familiarity: previous experience with
creating educational interfaces or materials and level of familiarity with Al
technologies (novice, developing, competent, advanced, expert).
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Table 3.2 A summary of the eight educators involved in our user study, detailing their
demographic data, field of specialization, years of experience (YoE), and self-reported
familiarity with Al tools and UI design.

ID Area of Expertise YoE Al tools UI De-
(Gender, Experience” sign

Age) Experience”
P1 (F, 35- English 10 00000 00000
44)

P2 (M, 35- English 20 00000 00000
44)

P3 (M, 55- Mathematics 27 [ JOIGIOION 10]0l0]e)
64)

P4 (M, 45- Cybersecurity 15 00000 00000
54)

P5 (M, 35- Computer Programming 6 00000 00000
44)

P6 (M, 45- Mathematics 14 00000 0000
54)

P7 (F, 45- Mathematics 15 00000 @000O
54)

P8 (M, 45- Cybersecurity 25+ 00000 00000
54)

" #0000 =novice ® 000 = developing e ® 0 © = competent ® @ ® ® 0 = advanced
® e 000 =cxpert

Criteria for inclusion in the study were as follows: a) current employment as teachers
with a minimum of 1 year of experience; b) English proficiency; c¢) experience
utilizing educational technology in teaching; and d) involvement in designing or
creating digital instructional materials. A varied sample was sought, encompassing
different subject areas, years of experience, and educational backgrounds to ensure

diverse perspectives.

The final sample of eight K-12 educators (5 female, 3 male) was diverse in
age (35-64 years), years of experience (M=16.5, range: 6-27), and subject area
(English, Mathematics, Cybersecurity, Computer Programming). All participants
had experience creating digital instructional materials, but none had prior experience
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with ITS authoring tools. Their self-reported familiarity with Al tools and UI design
varied, as detailed in Table 3.2.

The final sample comprised 8 participants (5 females and 3 males) aged between
35 and 64 years. The largest group (4) fell within the 45-54 age bracket, followed
by 3 in the 35-44 range, and 1 in the 55-64 range. The sample reflected a mix of
educational backgrounds, with 3 participants holding master’s degrees, 3 holding
doctoral degrees, and 2 possessing bachelor’s degrees. Participants’ teaching ex-
perience ranged from 6 to 27 years, averaging 16.5 years. The sample included
educators from various subject areas, such as computer programming (1), English
(2), mathematics (3), and cybersecurity (2). All participants reported familiarity with
different educational technologies, including creating digital presentations (8), using
learning management systems (7), designing online assessments (7), and employing
Al tools for content creation or grading (7). Moreover, 7 participants had experience
in producing instructional videos, and 6 had developed or modified digital learning
materials. Concerning more advanced educational technology usage, 5 participants
had crafted or personalized a course website, 4 had designed interactive digital activi-
ties (e.g., using HSP, Kahoot), and 3 had implemented adaptive learning technologies.

Only 1 participant indicated using virtual or augmented reality tools in education.

In terms of user interface design experience, 4 out of 8 participants indicated
having such experience. It is worth noting that none of the participants had prior
experience with using or designing content for intelligent tutoring systems, marking
this study as their initial encounter with this technology. The participants’ familiarity
with Al tools differed, with 2 participants having proficient experience, 3 having
intermediate experience, and 3 having beginner-level experience. Table 3.2 offers
a summary of the sample, detailing their fields of study, years of experience, and

levels of proficiency in educational technology.

Method

The research was carried out using remote video conferencing software, divided into

four primary stages:

Introduction and consent. Participants were informed about the study’s objectives
and processes, and gave their digital informed consent.



3.3 Pedagogical Step Decomposition and Preference-Driven UI Refinement 77

Interface design tasks. Each participant performed two interface design tasks:

» Conventional approach: Employing a drag-and-drop interface builder.

* Al-driven approach: Making use of our prototype Al-assisted design

tool.

As depicted in Figure 3.6, these methodologies present fundamentally distinct
approaches to interface creation - the conventional technique allowing direct
manipulation of interface components, while the Al-assisted approach offers
a structured workflow from requirements to final design. The sequence of
methodologies was counterbalanced among participants to reduce the impact
of learning effects. For each assignment, participants were given the freedom
to outline their own requirements for an ITS interface relevant to their field
of study. Subsequently, they were instructed to develop the most efficient

interface within a 30-minute timeframe.

Post-task survey. Following each design task, participants filled out the System
Usability Scale (SUS) [104], a standardized 10-item questionnaire with estab-

lished benchmarks, to evaluate the overall usability of each approach.

Semi-structured interview. After both tasks, we carried out a 30-minute interview
to collect detailed insights into participants’ experiences, preferences, and

suggestions for enhancement.

The design process was captured by screen-recording all sessions, and interviews
were audio-recorded for subsequent analysis. Each participant’s study session lasted

around 90 minutes on average (M = 87 minutes, SD = 8 minutes).

Measurements

We gathered both quantitative and qualitative data to thoroughly evaluate the efficacy

of each design approach:

Duration of task completion. The time taken to finish each interface design task
was measured, starting from when the requirements were given until the

participant indicated completion or when the 30-minute time limit was reached.
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Quality of interface. Two expert raters in educational interface design indepen-
dently assessed the quality of each completed interface using a standardized
rubric that evaluated five key factors on a 5-point scale: coherence of layout,
visual appeal, alignment with pedagogical principles, usability, and organi-
zation of content. Each factor was rated from 1 (poor) to 5 (excellent), with
specific criteria for each level. The total score varied from 5 to 25, with ratings
falling into categories of Excellent (21-25), Good (16-20), Adequate (11-15),
Needs Improvement (6-10), or Poor (1-5). Inter-rater reliability was deter-
mined using weighted Cohen’s kappa, applied to individual category scores to

ensure evaluation consistency.

Usability ratings. The System Usability Scale (SUS) scores provided a quantitative
measure of perceived usability for each design method.

Qualitative input. The semi-structured interviews investigated participants’ experi-
ences, preferences, perceived strengths and weaknesses of each method, and

suggestions for enhancement.

Throughout the Al-assisted design task, we documented particular interactions with
the Al tool, such as:

* Count of elements “liked” by participants in the generated interface drafts
* Count of elements “pinned” (selected to be kept) in the final interface design
* Frequency of deleting Al-generated steps
* Frequency of locking specific steps to prevent changes during regeneration
* Number of times participants chose to regenerate steps
* Frequency of editing Al-generated steps
The metrics offer understanding of participants’ interaction and refinement of the

Al-generated content, aiding in comprehending their design process and preferences

while utilizing the Al-assisted tool.
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3.3.2 Data Analysis

Our data was analyzed through a mixed-methods approach, combining quantitative
statistical analyses with qualitative examination of participant feedback.

Quantitative analysis: The System Usability Scale (SUS) scores were analyzed
using Wilcoxon signed-rank tests, with Benjamini-Hochberg correction applied at
o = 0.10 to handle multiple comparisons while maintaining appropriate power for
our user study sample size. Paired t-tests were used to compare task completion
times and interface quality measures between the traditional drag-and-drop method
and the Al-assisted method. This analysis encompassed both overall interface quality
scores and individual rubric items. Inter-rater agreement was determined using
Weighted Cohen’s Kappa, which is suitable for the ordinal data utilized in our
interface evaluation rubric. Descriptive statistics were generated for the interaction
metrics recorded during the Al-assisted design task, including the frequency of

element likes, pins, step deletions, locks, regenerations, and edits.

Qualitative analysis: The focus of our analysis of the interview data was on
extracting relevant quotes and insights that reflected participants’ experiences with
both design methods. We examined the interview transcripts to identify statements
that offered detailed descriptions of participants’ thoughts, preferences, and sugges-
tions regarding the traditional and Al-assisted design processes. These quotes were
then grouped thematically to enhance and provide context for understanding partici-
pants’ interactions with and perceptions of the two design methods. We employed a
thematic analysis approach. Two researchers independently reviewed the interview
transcripts to identify initial codes and emergent themes. They then met to compare
their findings, discuss discrepancies, and collaboratively develop a unified coding
scheme. This consensus-based process, a standard practice for ensuring reliability in
qualitative research, resulted in the final set of themes presented in our results.

3.3.3 Results

We present our findings across several dimensions, including user interactions,

perceived usability, and overall effectiveness.
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User Interactions Distribution by Action Type
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Fig. 3.7 Distribution of user interactions with Al-assisted design tools, including actions like
’Like Element’, 'Pin Element’, ’Delete Step’, *Lock Step’, ’'Regenerate Steps’, and ’Edit
Step’ across eight participants. The average (Avg) and standard deviation (SD) for each
action type are highlighted above the respective violin plots.

User Interaction Patterns

To gain insights into how educators engaged with the Al-assisted design tool, we
recorded specific interactions during the design process, including the frequency
of element likes, pins, step deletions, locks, regenerations, and edits. These met-
rics provide a window into participants’ choices when using the Al-assisted tool,
allowing us to understand the effectiveness of different features and identify areas
for improvement. Figure 3.7 provides a detailed breakdown of how participants
interacted with the Al-assisted design tool. In the step refinement phase, we observed
varied usage of the features. The "Lock Step" feature was used moderately, with an
average of (average=5.6, SD=11.0) locks per session. This wide standard deviation
suggests significant variability in usage across participants. The "Edit Step" and
"Delete Step" features were used more conservatively (average=1.9, SD=3.1) and
(average=1.9, SD=4.1) per session, respectively. The "Regenerate Steps" feature was
used least frequently (average=0.6, SD=1.1) times per session. In the interface design
phase, the "Like Element" feature was heavily utilized across all participants, with an
average of (average=8.3, SD=6.0) likes per session. The "Pin Element" feature, used
to definitively select elements for the final design, saw slightly less frequent but still
significant use (average=7.1, SD=9.7) pins per session. The higher usage of "Like"
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compared to "Pin" suggests that while participants were comfortable expressing pref-
erences through likes, they were somewhat more cautious about making definitive
selections. The variability in feature usage, particularly for "Lock Step" and "Pin
Element", highlights areas where user understanding and confidence in using certain
features may vary. This suggests potential for improving feature explanations or
user onboarding in future iterations. These interaction patterns demonstrate that
participants actively engaged with the proposed features to realize our design goals.
They utilized the Al-assisted tools in both the step refinement and interface design
phases to shape their ITS interfaces according to their pedagogical needs and design
preferences.

Perceived Usability and User Experience

Usability A t: Al vs Drag-and-Drop

DX Drag-and-Drop
Lo |

I felt very confident using
the tool.

1 would imagine that most
people would learn to use this
tool very quickly.

1 found the various functions
in this tool were well
integrated

b o

I thought the tool was easy to
use.

*

I think I would like to use
this tool frequently.

I needed to learn a lot of
things before | could get
going with this tool .

1 found the tool very
cumbersome to use

I thought there was too much
inconsistency in this tool.

I think that | would need the
support of a technical person
to be able to use this system.

1 found the tool unnecessarily
complex.

Fig. 3.8 Usability assessment comparing Al-assisted design with traditional drag-and-drop
methods, highlighting aspects like confidence in use, learning curve, and perceived tool
complexity. Error bars represent standard deviations. Asterisks (*) indicate statistically
significant differences between the two methods (p < 0.05).
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Table 3.3 Comparison of SUS items between Al-Assisted and No-Al (Drag-and-Drop)
methods. Data are reported as mean (SD). Items marked with an asterisk (*) did not remain
significant under Benjamini-Hochberg correction.

Item Al-Assisted No-Al p-value Effect Size
Complex 1.38 (0.74)  2.50(1.07)  0.041 -0.625
Need Support 1.88 (0.83) 3.00(0.76)  0.034 -0.625
Inconsistency 1.75(0.89) 2.88 (1.13) 0.038 -0.625
Initial Learn- 1.88 (0.83) 2.88(0.83) 0.038 -0.625
ing

Use Fre- 4.25(1.39) 2.75(1.49) 0.042 0.625
quently

Better Inte- 3.75(1.39) 2.50(1.07) 0.039 0.625
grated

More Confi- 4.25(0.89) 2.88(1.36) 0.026 0.750
dent

Faster Learn- 4.38(0.92) 3.00(1.20) 0.042 0.625
ability

Ease of Use* 4.75(0.46) 3.25(1.04) 0.016 0.875
Cumbersome*  2.38 (1.60)  3.88 (0.83) 0.024 -0.750

= Not significant after Benjamini-Hochberg correction (o = 0.10).

To assess the usability and user experience of the Al-assisted method compared
to the traditional drag-and-drop approach, we employed the System Usability Scale
(SUS) [104]. Table 3.3 presents the results of the assessment. Overall, participants
rated the Al-assisted tool more favorably than the traditional drag-and-drop method
across most SUS dimensions. Educators reported that the Al-assisted approach was
less complex, required less technical support, and was more consistently integrated
into their workflows. They also indicated greater confidence and a stronger preference
for frequent use under the Al-assisted condition, suggesting that it better aligns with
educator-centered design needs. Although items related to ease of use and perceived
cumbersome use reached nominal statistical significance before multiple-comparison
adjustment, they did not remain significant under the Benjamini-Hochberg correction.
Nonetheless, these results underscore the Al tool’s potential for reducing complexity,
enhancing educator confidence, and streamlining the ITS interface design process.

Interface Quality and Design Efficiency

Figure 3.9 presents the comparison of interface quality ratings and time taken to
complete the design tasks.
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Interface Design: Quality vs Time

Interface Quality

AU Drag-and-Drop
w2 A

7

Interface Quality
e S SIS

OO OO Desirable to Maximize T

Time taken to complete the
interface [

Time to Complete (minutes)

Fig. 3.9 Comparison of interface design quality and time efficiency between Al-assisted
and drag-and-drop methods. Error bars represent standard deviations. Asterisks (*) indicate
statistically significant differences between the two methods (p < 0.05).

Table 3.4 Comparison of interface quality criteria between Al-assisted and Drag-and-Drop
methods. Data are reported as mean (SD).

Criterion Al-Assisted No-Al t(14) p-value
Layout  Coher- 4.36(0.72) 3.21(1.15) 3.12 <0.01

ence

Alignment with  4.00 (1.07) 293 (1.39) 224 <0.05

Pedagogical

Principles

Usability 3.86 (1.12) 2.86(1.25) 2.18 <0.05

Content Organiza- 4.00 (1.25) 2.86(1.46) 2.17 <0.05

tion

Visual Appeal 3.79(0.77) 3.14(1.25) 1.63 >0.05

The Al-assisted method maintained comparable design time (Al average: 8.24
minutes, SD = 3.25; Drag-and-Drop average: 9.06 minutes, SD = 2.07; t(14) = -0.60,
p > 0.05) while significantly enhancing interface quality (Al average: 20.00, SD
= 4.31; Drag-and-Drop average: 15.00, SD = 5.71; t(26) = 2.61, p < 0.02). This
combination of quality improvement and the superior usability scores demonstrates
the benefits of the Al-assisted approach.

Figure 3.10 presents a comprehensive analysis of interface quality across five
key criteria. In addition, Table 3.4 summarizes the quantitative comparison between
the Al-assisted and traditional drag-and-drop methods. The Al-assisted approach
demonstrated significantly higher ratings in Layout Coherence, Alignment with
Pedagogical Principles, Usability, and Content Organization, indicating that Al-
generated interfaces tend to be better aligned with educational principles, and more
user-friendly. Although Visual Appeal scores were also higher for Al-generated
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Comparison on the Evaluation Rubric: Al-Assisted vs Drag-and-Drop

XX Drag-and-Drop
A Al

b

Content Organization

Usability

Alignment with Pedagogical
Principles

Visual Appeal

Layout Coherence

Desirable to Maximize T

o 1 2 3 4 5
Average Likert Score

Fig. 3.10 Comparison of Al-Assisted vs Drag-and-Drop methods on the Evaluation Rubric.
Error bars represent standard deviations. Asterisks (*) indicate statistically significant
differences between the two methods (p < 0.05).

interfaces, this difference did not reach statistical significance. These findings
suggest that while the Al-assisted method notably improves the functional aspects of
interface design, its impact on aesthetics is less pronounced. Inter-rater reliability
was assessed using the Intraclass Correlation Coefficient (ICC2) to account for the
continuous nature of our evaluation criteria. The results showed varying levels of
agreement between reviewers across different criteria: Layout Coherence: ICC2 =
0.26 (fair agreement), Visual Appeal: ICC2 = 0.06 (slight agreement), Alignment
with Pedagogical Principles: ICC2 = 0.25 (fair agreement), Usability: ICC2 = 0.24
(fair agreement), and Content Organization: ICC2 = 0.35 (fair agreement). Despite
these variations in interrater reliability, the consistent trend of higher scores for the

Al-assisted method across all criteria strengthens the overall findings of the study.
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Semi-structured Interviews

The semi-structured interviews offered valuable qualitative insights into participants’
experiences with both the Al-assisted and the traditional drag-and-drop methods.
These discussions captured the nuances of user interaction, gathered feedback on
specific features, and highlighted perceptions of how an Al-assisted tool might
impact the ITS design workflow.

A key theme was the positive user experience and enhanced usability of the
Al-assisted approach. Participants found the new method more intuitive and efficient
than drag-and-drop: “Al-assisted method felt more intuitive and easier to use.” (P1).
Many also emphasized time savings: “It took away my inability to understand the
drag-and-drop and replaced it with multiple layouts quite quickly.” (P4). Another
educator (P5, Computer Programming) added, “The Al felt like a collaborator. It did
the grunt work of layout, and I could focus on the teaching flow, which is the part I
actually care about.” The overall impression was that the Al-assisted tool allowed

participants to focus more on educational goals instead of software details.

Another recurring theme involved the balance between user control and Al au-
tomation. While many felt they retained adequate control—I was able to collaborate
with the Al-assisted method to tailor the tutor to students’ needs.” (P2)—others
noted a reduction in manual oversight: I had less control over the Al-generated
final design compared to the drag-and-drop approach.” (P7). A math teacher (P6)
elaborated, “I liked the suggestions, but sometimes I just wanted to move a box one
pixel to the left, and that felt harder with the Al. The drag-and-drop is clunky, but it’s
direct.” These differing perspectives imply that although automation streamlines the
process, offering additional options for manual refinement might better meet diverse

user preferences .

In terms of pedagogical impact, most participants agreed that the Al-assisted
approach could lead to more effective and accessible tutor interfaces by lowering
barriers for educators with minimal design expertise: Instructors can generate
content quickly without a lot of prior knowledge.” (P2). Yet, concerns were raised
regarding instructional quality: I did not like the limited explanations and instructions
provided by the Al-assisted method.” (P3). This feedback indicates that while the
tool enhances efficiency, further development is needed to ensure it fully supports

sound pedagogical practices.
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Looking forward, all participants expressed willingness to use an Al-assisted
tool for tutor creation across diverse subject areas. They suggested enhancements
such as more detailed instructions and improved visual design to further elevate the
user experience. One participant remarked, “More directions are needed to make full
use of the tool.” (PS), emphasizing that the tool could be further refined fully support
educators’ needs. Another participant (P8, Cybersecurity) noted, “This could be a
game-changer for creating quick practice modules for my students before an exam.
The potential is huge.” Overall, these implications underscore the importance of
balancing automation with user control and comprehensive support to optimize both
usability and pedagogical effectiveness.

3.3.4 Discussion

Our investigation into Al-supported interface design for Intelligent Tutoring Systems
(ITSs) uncovers several key revelations regarding the transformative potential of Al

in the realm of educational technology.

Enhanced Efficiency and User-Friendliness: Our Al-supported approach signifi-
cantly enhances usability, as evaluated through both standard and bespoke metrics
[104], in comparison to the prevailing drag-and-drop technique. The rapid generation
of interface variations by AI empowered educators to explore a broad spectrum of
design possibilities without requiring additional time commitments. This automation
reduced manual labor, allowing educators to concentrate on higher-level pedagog-
ical choices rather than the technical intricacies of interface design. The system’s
automated pedagogical step segmentation simplified the process by harmonizing
interface elements with established instructional strategies, ultimately facilitating a

more streamlined design process.

Improved Accessibility and Democratization: The notable improvement in user-
friendliness is particularly significant, as the intricacy of ITS development had
previously hindered its widespread adoption [26]. Our results suggest that Al
support effectively mitigated this obstacle, rendering ITS creation more attainable for
educators lacking specialized programming or design skills. This democratization
of ITS development is in line with the objectives of prior authoring tools like CTAT
[28] and ASPIRE [73], while pushing the field forward by directly addressing the

specific challenges related to interface design. The capacity for educators to craft
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tailored, context-specific tutoring materials holds promise for significantly enhancing
educational practices by enabling more individualized, responsive, and culturally

appropriate learning experiences in various educational environments.

Alignment of Quality and Pedagogy: The Al-assisted technique led to the devel-
opment of interfaces that were more closely aligned with pedagogical objectives, a
enhancement largely credited to our system’s incorporation of scaffolding principles
into the interface design process. While Calo and MacLellan [77] offered speed and
direct translations of educator requests, our method introduced an additional level
of pedagogical enhancement, guaranteeing that the interfaces were customized for
specific educational settings. Moreover, participants frequently mentioned that the
Al-generated interfaces encouraged them to explore design elements and teaching
strategies that they may not have considered independently. This indicated that
Al support could function not only as a tool for efficient execution but also as a

wellspring of inspiration and growth for educators.

Challenges and Limitations: Although the majority of our findings were positive,
it was crucial to recognize the challenges and limitations revealed in our research.
The learning curve linked with the Al-assisted approach emphasized the importance
of thorough onboarding and clear guidance during the introduction of innovative
interaction models. This was consistent with broader challenges in incorporating
new technologies into educational settings [27] and emphasized the vital role of user-
centered design in Al-supported tools. A notable limitation was the lack of real-world
testing for the final adoption of the developed tutor. Longitudinal studies would be
necessary to evaluate the effectiveness and long-term engagement potential of the Al-
generated interfaces. Our study was conducted with eight educators, which limited
its generalizability. Additionally, the small sample size of eight participants may have
hindered our ability to address educational areas where problems were challenging
to resolve sequentially. In such instances, alternative interaction solutions would be
required to cater to the distinctive pedagogical requirements and limitations of those
fields. Subsequent research should encompass a more diverse range of demographics

(gender, subject areas) and longitudinal studies to assess enduring usability.

Future Directions: Our study presents several promising avenues for future
research and development in Al-assisted educational technology design. One primary
direction is the investigation of more advanced preference learning algorithms that

could further customize the AI’s output to individual educators’ styles and needs over
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time. Research could explore how interaction with Al-generated designs impacts
educators’ own design thinking and pedagogical strategies over time. This could
lead to the creation of Al-assisted tools that not only assist in developing educational
resources but also actively support educators’ professional growth. This should
encompass not only the efficiency and quality of the design process but also the
effectiveness of the resulting ITSs in actual classroom settings. Such research will
be crucial in understanding the long-term implications of Al support in educational
technology development and ensuring that these tools make a substantial contribution

to enhanced learning outcomes.

Ethical Considerations

Our Al-assisted ITS design system enables educators to develop and customize
tutor content, reducing dependence on pre-made, rigid materials. This strategy
involves educators in the process, potentially reducing biases and other concerns
that could arise from Al-generated content. By granting educators greater influence
over tutor technology, we allow them to tailor the content to their specific teaching
objectives and cultural contexts. As we progress towards wider implementation, we
acknowledge the importance of ongoing ethical considerations. Future improve-
ments may involve implementing bias detection algorithms to identify potential
issues in design elements or content, such as stereotypical portrayals or unbalanced
examples. Enhancing transparency in the Al decision-making process and expanding
customization options will further empower educators to establish inclusive and eq-
uitable learning environments. Establishing ethical principles and training programs
for educators regarding the responsible utilization of Al in education will be essential.
Regular evaluations and feedback mechanisms involving various stakeholders will
help ensure the system remains efficient and in accordance with evolving ethical
standards in Al and education.

3.3.5 Summary

This chapter introduces the primary contribution aimed at addressing the difficulties
related to accessibility and quality in ITS interface design with the assistance of
Al. The objectives of our system design were threefold. Firstly, our aim was to aid

educators in translating high-level instructional goals into practical, pedagogically
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aligned interfaces. Secondly, we strived to offer adaptability and personalization,
enabling educators to maintain authority over the design process. Thirdly, we con-
centrated on ensuring that the design process was intuitive and accessible, enabling
educators with limited technical knowledge to actively engage in the development
and customization of the interfaces. These goals were achieved by combining a
user-centered approach with Al technology. Our system emphasizes a methodical
pedagogical breakdown, which simplifies high-level instructional objectives into
manageable, structured steps. Additionally, we implemented a UI refinement process
based on user preferences, allowing educators to influence the AI’s design decisions
through user-friendly, click-based interactions.

In a user study comparing eight educators with different teaching backgrounds,
our method maintained the same design time as existing drag-and-drop techniques
but improved interface quality by 33%. The Al-assisted approach also showed
improved usability, as indicated by higher scores on various aspects of the System
Usability Scale. The main benefit of Al assistance is its capability to translate
high-level instructions into lower-level elements (such as pedagogical steps and
interface DSL). When coupled with human-centered Al principles, these tools have
the potential to enhance end-user development by assisting non-expert users in
overcoming technical challenges in creating digital content. This shift from abstract
objectives to tangible outcomes, though requiring careful consideration of safeguards
and debugging processes, could lead to more user-friendly, accessible, and efficient
methods for generating educational materials. Ultimately, this empowers educators

to play a more active role in customizing their teaching experience.

3.4 Conclusion

This chapter has presented novel approaches for empowering educators to create
effective intelligent tutoring systems through Al-assisted interface design tools. Our
contributions address a significant gap in existing ITS authoring platforms, which
have historically focused on developing domain models and pedagogical strategies

while assuming educators possess interface design expertise.

Our initial enhancement to the Apprentice Tutor Builder demonstrated significant
efficiency improvements, reducing development time by 68% for complex interfaces
while maintaining pedagogical quality. Building on this foundation, we introduced a
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more comprehensive approach that combines pedagogical step decomposition with
preference-driven Ul refinement, allowing educators to maintain control over the

design process while benefiting from Al-generated suggestions.

The user study involving eight K-12 educators validated our approach, showing a
33% improvement in interface quality compared to traditional drag-and-drop methods
without increasing design time. The Al-assisted approach received significantly
higher usability ratings across multiple dimensions, indicating that it successfully
lowered technical barriers for educators without compromising their pedagogical

agency.

These results suggest that Al-assisted authoring tools can democratize the cre-
ation of intelligent tutoring systems by making the development process more
accessible to educators without technical backgrounds. By automating complex
design decisions while keeping educators involved in the pedagogical structuring,
our approach enables the creation of more personalized, context-appropriate learning
experiences that reflect educators’ teaching philosophies and domain expertise.

Future work will focus on expanding the system’s capabilities to support a wider
range of subject areas, developing more sophisticated preference learning algorithms,
and conducting longitudinal studies to assess the effectiveness of educator-created

tutoring systems in classroom settings.



Chapter 4

Web Development for End Users:
Natural Language Tools for Creating
and Customizing Websites

Publication notice. The techniques described in this chapter are from the work
(“Leveraging Large Language Models for End-User Website Generation”) published
in IS-EUD’23 and “MorphGUI: Real-time Natural Language Interface Customization
with Large Language Models,” currently under review.

4.1 Introduction

The widespread adoption of the Internet has fundamentally transformed how we live,
work, and communicate, generating substantial demand for website development
and customization. While web presence has become essential for individuals and
organizations alike, traditional website development and customization remain tech-
nical endeavors that present significant barriers for non-technical users. This chapter
explores how Generative Al can bridge this gap, enabling end-users to create and
customize web interfaces using natural language without requiring programming

expertise.

Traditional web development typically demands knowledge of HTML, CSS,

JavaScript, and various frameworks—skills that are inaccessible to most people.
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In response to this challenge, the field of End-User Development (EUD) [14, 105,
15, 106] has emerged, aiming to empower non-technical users to build websites
without programming. While low-code/no-code tools [104, 107-110] have made
progress by allowing users to visually arrange pre-built components with automatic
code generation, these approaches present their own limitations. Many such tools
impose steep learning curves, requiring significant time investment before users can
create satisfactory results [16]. Additionally, they often constrain users to predefined

options and templates, limiting flexibility for complex websites [111, 112, 17, 113].

Similarly, web interface customization remains challenging for end-users. Con-
ventional one-size-fits-all graphical user interfaces (GUIs) fail to address diverse
individual needs and context-dependent preferences [22, 21], resulting in suboptimal
user experiences. Studies of interface personalization behavior reveal that users often
want to modify interfaces in ways not anticipated by designers [18, 114]—such as
reorganizing interface elements to match their workflow [20] or adjusting visual
properties for accessibility [115]. Existing customization approaches typically re-
quire technical expertise with CSS and JavaScript, or they restrict users to predefined

configuration options that fail to capture genuine adaptation requirements [19].

The emergence of Large Language Models (LLMs) has created unprecedented
opportunities to address these challenges. LLLMs trained on massive datasets can
generate text that closely resembles human language, making them well-suited
for translating natural language input into code [116—-118]. Recent research has
begun exploring LLMs for website generation [119] and code snippet creation
[118], as well as interface customization through tools like Stylette [23] that enable
styling adjustments through natural language. However, these early approaches have
significant limitations—they typically do not allow users to refine generated output
through iterative interaction, struggle with ambiguous specifications, or restrict
customization to predefined attribute sets without supporting functional modifications

or new component creation.

In this chapter, we present two complementary approaches that leverage LLMs
to democratize web development and customization through natural language inter-
action. The first focuses on website creation, introducing a user-centric approach
to LLM-driven web development that enables iterative refinement and multi-page
support. The second addresses interface customization, presenting MorphGUI—a
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framework that facilitates real-time GUI modification through structured natural

language input.

Our LLM-driven web development approach centers around prompt engineering
that guides model responses to follow predefined templates, enabling direct parsing
and controlled modification. This allows users to concentrate on refining their web-
sites conceptually without worrying about underlying code. Key innovations include
a modification strategy that retains context and updates only specific code sections
rather than regenerating entire documents, and support for creating multiple linked
pages with shared context. The approach requires minimal technical knowledge,
eliminating the need to master programming syntax or development tools, while

maintaining user control through iterative refinement.

The MorphGUI framework complements website creation by enabling customiza-
tion of existing interfaces through natural language. Unlike previous approaches that
rely solely on predefined options or user models, MorphGUI integrates traditional
GUI controls with LLM-powered customization. It employs a structured input ap-
proach that disentangles stylistic (“how it should appear”) from functional (“what
it should do”) modifications, guiding users through the customization process and
allowing targeting of specific components or the overall interface. This structured
system enables MorphGUI to dynamically generate new interface elements or modify
existing ones, providing flexibility beyond traditional predefined settings.

Both approaches represent significant advances in balancing automation with
user control. While existing Al tools that transform hand-drawn designs into websites
[120, 121] offer valuable alternative pathways for non-technical users, our natural
language approaches provide distinct advantages. They enable iterative refinement,
broader customization capabilities, and accommodate complex designs that might
be difficult to express visually. Moreover, they align with the principles of Human-
Centered Al [82], ensuring users retain control and understanding while benefiting

from Al capabilities.

Through experimental evaluations, we demonstrate the effectiveness of these
approaches in lowering technical barriers while preserving user agency. Our user
study of MorphGUI with 18 participants shows that users regardless of technical
expertise can successfully accomplish customization tasks through natural language,

achieving an average target similarity of 73
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Together, these approaches demonstrate how Generative Al can transform web
development and customization from technical activities requiring specialized knowl-
edge into accessible creative processes driven by natural language. By enabling users
to express their intentions in familiar terms and providing appropriate guidance and
feedback, we bridge the gap between human creativity and technical implementation,

expanding who can participate in creating and customizing web interfaces.

4.2 LLM-Driven End-User Web Development

1 2 3
User Input ——— > Prompt Manager —> LLM — > HTML Compiler
4

Fig. 4.1 The process of developing an interactive website: (1) User input, (2) Input processing
by Prompt manager, (3) HTML code generation by LLM, (4) Error checking by HTML
compiler, with a loop back to the Prompt manager for refinement if errors are found.

In our methodology, we employ a strategy that compels the LLM to adhere to a
specific response template, as described in the provided prompt in Figure 4.2. The
main objective is to guarantee that the produced code is organized and meets the
criteria set by the user. The LLLM is directed by a set of regulations that stipulate the
structure of the generated responses. Through the utilization of this template-driven
method, end users can concentrate on the desired functionality and design of their
website without worrying about the underlying code, as the system processes the
requests and responses in the designated format and converts them into HTML.

When initiating a new document, the LLM follows the response format: new,
{document name), {code). For instances where a document necessitates al-
terations, the LLM complies with a response pattern that avoids displaying the
entire code, opting for a more effective approach: {(document name); <add or
replace), {nl-n2 range of lines if replace, nl if add),{code);

(add or replace), {(nl-n2 range of lines if replace, nl if add)

; {code). This approach guarantees that only essential modifications are imple-
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mented, preserving the original code and preventing unnecessary API responses.
The LLM interprets the user’s request as input, in the format request: {request),
and generates responses in accordance with the previously mentioned template. By
adhering to the designated format, the LLM adeptly adjusts existing documents, only
indicating the lines that were modified and the modifications required, while keeping
the unchanged sections of the document intact.

Moreover, the method aids in error identification and resolution. The organized
response layout enables the parser to pinpoint any mistakes in the produced code,
equipping the user with the essential details to tackle these problems. When the LLM
produces code with compilation errors, the system can address the issue directly by
alerting the LLM about the error and the necessary code corrections, as shown in
Figure 4.1. This efficient method for error detection and resolution conserves time
and resources, enhancing the accessibility and efficiency of the web development

process for non-technical users.
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Fig. 4.2 The prompt designed to generate and edit HTML and CSS files according to natural
language requirements, with specific response structures for making new files and revising

Prompt:

You have been tasked with generating HTML and CSS code according to
the user’s requirements. You can create multiple HTML files, but only one
CSS file which will define the style of the page. I will provide you with
the required response format, which you must strictly adhere to without
including any additional words beyond the specified format.

If a new document needs to be created, your response should be in the
format: new, (document name), (code).

If you need to make changes to a document that has been previously created
in another response, you should not provide the entire code again. Even
for substantial modifications, you should follow the format below for your
response:

(document name); (add or replace), (nl-n2 range of lines if replacing, nl if
adding ), (new line); ... (add or replace), (n1-n2 range of lines if replacing,
nl if adding); (new line).

If no changes are needed for a specific document, you should not output
anything.

When adding a line at a specified line number, indicate <add>, and when
replacing a line within a specified range, specify <replace>.

Please note that the user’s request will be provided as “request: (request)”.
Moreover; if you are modifying an existing document, only present the lines
of modification and the modification itself in the prescribed format, as

concisely as possible, to avoid re-entering unchanged parts of the document.

current ones.

4.2.1 Method

Iterative Refinement and Multiple Pages Generation

The methodology enables users to refine the output of the LLM with subsequent

input, giving them increased flexibility and control over the generated code. This

iterative process ensures that the final website design closely aligns with the users’
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requirements and preferences. Users can offer feedback and request changes in
real-time, empowering them to actively influence the development process and avoid
time-consuming revisions post website generation. Additionally, this approach
facilitates the generation of multiple pages, enhancing the user experience and
offering a more comprehensive solution for website development. Users can create
interconnected pages with diverse designs and content, enabling the development of

intricate and feature-rich websites without requiring extensive technical expertise.

Range of Design Choices

The proposed approach provides users with the ability to select from a range of
design options in the generated documents. By offering various design alternatives,
users can experiment with different aesthetics and layouts for their website, ensuring
that the final outcome reflects their desired appearance. This functionality enhances
the customization and flexibility of the website development process, enabling users

to establish a distinctive and personalized online presence.

To assist in the choice of design options, the methodology may integrate prede-
fined templates or design components that the LLLM can utilize as a starting point.
Users can then modify and personalize these templates according to their preferences,
enabling them to swiftly create visually appealing websites without commencing
from scratch. The LLM can also leverage user feedback during the iterative refine-
ment phase to enhance the quality of the generated design options and cater to the
specific requirements of the users.

Efficient Prompting Strategy

The strategy for efficient prompting involves instructing the LLLM to provide only
the count of lines to modify and the specific modifications, rather than rewriting the
entire document. This method allows for generating code that benefits from a wider
context window, as it involves fewer interactions and tokens. Consequently, the LLM
can handle a longer sequence of refinements, which enhances model performance

and user experience.

A fundamental issue in utilizing LLMs for website development is dealing with
the constraints of the model’s maximum token length. Other methods typically
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entail generating the complete codebase at once, which may lead to surpassing the
token limit. Through the implementation of the efficient prompting strategy, the
approach enables the model to concentrate on the most pertinent sections of the
code, thereby reducing the risk of exceeding the token limit. The reduction in the
number of generated tokens is crucial for minimizing the expenses associated with
API usage, as the costs are directly tied to the token count. This not only makes the
approach more cost-effective for end-users but also facilitates broader utilization of

LLM resources for website development.

Furthermore, a broader context window empowers the model to handle lengthier
text sequences, enhancing its grasp of user requirements and its capability to produce
precise and contextually appropriate code. Extending the context window also aids
the LLM in maintaining consistency throughout the generated code, guaranteeing
that the resulting website retains a uniform design and structure. With access to
more contextual details, the LLLM can make more informed decisions during code
generation, thereby enhancing the overall quality of the produced website.

By creating a reduced number of tokens, the strategy put forward results in cost
savings and improved resource utilization, as explained in the preceding sections.
This not only enhances the affordability of the approach for end users but also
enables broader utilization of LLM resources for website construction. The effective
utilization of API resources may additionally result in quicker response times and a

smoother user experience during interactions with the LLM.
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Fig. 4.3 Visualization of the sequential website development process, represented in columns
and rows: Columns represent the Request, Response, and Rendered Page; Rows illustrate
three requests — the first and third for creating new pages, and the second for improving the
current page. It is important to note that the code in the response is not included, but the
provided responses should help readers grasp the format used for interacting with the LLM.

4.2.2 Proof of Concept

In order to showcase the effectiveness of our method, we have developed a proof-of-
concept implementation using GPT-4 [122], demonstrating the practical application
of the technique. Figure 4.3 depicts the sequential instructions for website devel-
opment using natural language and the GPT-4 model. The figure illustrates the
interaction format, helping readers grasp the structured responses and the method-
ology employed. While the actual code within the responses is not displayed, the
provided responses offer enough detail to understand the template and format uti-
lized in the GPT-4 interaction. This proof-of-concept example demonstrates how
our approach can be utilized in real-world scenarios to design and refine websites
based on natural language specifications and the capabilities of LLMs, ultimately

simplifying the web development process for users.
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4.2.3 Summary

The suggested methodology presents an efficient prompting strategy for engaging
with external LLM APIs, which aims to optimize resource utilization and enhance
user experience. By concentrating on reducing the number of generated tokens
and expanding the context window, this method facilitates cost savings, improved
resource utilization, enhanced model performance, and greater control over the

generated code.

Offering a range of design choices and iterative refinement further enhances the
customization and adaptability of the website development process. By tackling
key challenges in LLM-based website development, such as token restrictions and
contextual comprehension, the proposed methodology is poised for integration with
current low-code/no-code tools to extend the technology’s benefits to a broader

audience.

In future endeavors, integrating the approach with a low-code/no-code platform
can validate the effectiveness and usefulness of the methodology through user studies.
This integration can also streamline the development process by providing a user
interface for interacting with the LLLM, thereby enhancing the overall user experience.
The ultimate objective remains to democratize website development and make it

more accessible to users lacking technical expertise.

4.3 Real-Time GUI Customization with Natural Lan-

guage

Traditional graphical user interfaces offer limited customization options, typically
constraining users to predefined settings that fail to address their unique needs. While
developers can modify interfaces through code, end-users without programming
knowledge are often unable to implement the specific modifications they desire. Sec-
tion introduces MorphGUI, a framework that bridges this gap by enabling real-time
interface customization through natural language. By leveraging Large Language
Models to interpret user requests and generate corresponding interface modifications,
our approach empowers users to articulate and implement complex adaptations with-

out technical expertise. The system’s structured input method separates functional
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requirements from visual specifications, guiding users through the customization

process while maintaining interface coherence.

We present a use case scenario that follows a content manager named Sarah. This
narrative demonstrates the limitations of conventional interface customization meth-
ods and highlights how our natural language customization framework addresses
these constraints. By contrasting Sarah’s experience with traditional GUI controls
against her interaction with MorphGUTI’s structured natural language input system,
we showcase how end-users can articulate and implement complex, context-specific
interface modifications that go beyond predefined settings. This scenario empha-
sizes MorphGUTI’s ability to empower users without technical expertise to realize

customization intentions that would otherwise require developer intervention.

Consider Sarah, a content manager who frequently utilizes a calendar application
to schedule and track team meetings. While the application provides standard cus-
tomization settings for colors, fonts, and basic layout options, Sarah faces difficulties
in adapting the interface to meet her team’s specific workflow requirements. She
aims to alter how meetings are presented to emphasize upcoming deadlines and

differentiate between various project categories.

Initially, Sarah tries using the conventional GUI controls to tweak color palettes
and text sizes using preset configurations. However, she soon realizes that these
fixed choices are insufficient for achieving her desired outcome: integrating deadline
details with meeting titles and applying conditional formatting based on project
types. Employing MorphGUT’s structured input method, Sarah first opts for the
“Global GUI” adjustment and defines in the “What it should do” field: “Display
meeting deadlines alongside titles and group events by project category.” In the
“How it should appear” field, she specifies: “Utilize bold red text for urgent deadlines
and employ distinct background colors for each project category.” Through this
natural language interaction, MorphGUI produces a fresh calendar view that merges
deadline information with meeting presentations and enacts the requested visual
classification. Sarah then selects the specific header component to introduce a new
feature, articulating in the functional field: “Include a color legend displaying project
categories” and in the visual field: “Present as a horizontal strip at the top featuring
colored boxes and category labels.” The structured input fields lead her through each
adjustment while upholding the coherence of the overall interface.
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This use case illustrates how MorphGUI goes beyond conventional static cus-
tomization choices by enabling users to articulate and execute more intricate, context-
specific interface adjustments using natural language directives, at both overall and

component-specific levels.

4.3.1 Overview of the Architecture

Our system is designed with the architecture depicted in Figure 4.4. Users interact
with the system through a web-based front-end that combines application-specific

features with customization options for the interface.

The dynamic component module serves as the central visualization engine,
overseeing both the rendering of the current interface and the creation of updated
views based on user input. This module communicates directly with the front-end
to provide real-time interface updates. It adopts a component-based architecture
that permits the dynamic adjustment and re-rendering of interface elements without

necessitating page reloads.

The server handles user preferences, database operations, historical system modi-
fications, and coordination with the Al module. The Al component, which utilizes
a Large Language Model, interprets natural language descriptions and transforms
them into specific interface specifications. These specifications undergo validation
before being converted into executable interface code by the dynamic component

system.

A database layer manages the persistence of user preferences, interface versions,
and component configurations. The system retains both current and previous interface
states, enabling version control features that empower users to monitor and reverse
changes as required. This versioning mechanism offers users a safety net when

experimenting with interface alterations.
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Fig. 4.4 llustration of the system architecture depicting the connections among user interface,
server elements, and Al services

Customization Interface of MorphGUI

The customization interface of MorphGUI, as depicted in Figure 4.5, is divided
into two primary sections: traditional static settings and natural language-driven
customization. The “Static Settings” dropdown allows users to utilize standard
GUI controls for basic adjustments such as colors, fonts, and layout choices. The
“Dynamic Settings” segment facilitates more intricate customizations through natural

language input.

The approach of Large Language Models (LLMs) introduces new challenges in
ensuring consistent interpretation of user intent and preserving interface usability
throughout customizations [123]. Recent studies have demonstrated that prompt
engineering is essential in translating abstract user objectives into tangible interface
implementations, although creating effective prompts is not straightforward for
many users [78, 124]. Fundamental principles for successful prompting with LLMs
encompass offering clear guidance, utilizing relevant examples, dividing tasks into
smaller components, and accurately detailing layout and styling requirements [125,
126, 119].
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Our framework leverages these insights by incorporating a natural language
interface that allows users to operate at various levels of customization. In Figure
4.5, within the “Personalize” section, users have the option to either modify existing
interface elements, add new components, or select “Global GUI” to enhance the entire
interface. Within the chosen scope, users can communicate their desired alterations
through two distinct input fields that outline their functional and aesthetic criteria.
The first field, titled “What it should do,” addresses behavioral adjustments and
functional requirements. The second field, “How it should appear,” concentrates on
visual aspects such as styling and layout. This approach of using two separate fields
assists users in expressing their preferences effectively by offering clear contexts
for functionality and appearance, allowing the system to handle behavioral changes
and visual modifications independently. A button styled with a gradient initiates the

customization process, and a “Previous” option permits users to revert changes if

necessary.
Enhance With Al X
Static Settings ~
Dynamic Settings ~
Personalize!

Dropdown menu for selecting
-- Select an Element -- . .
interface elements to customize.
Navigation Buttons © —@ Selected component name
and remove option.
What it should do

I X —@ Define component behavior. ]
How it should appear -
—@ Specify visual styling.

Al Imitation v

i Create new interface based
| 1 te - —{ : ) e
{0 Generate -+ on specifications.
Return to last generated
version.
Restore @) —@ Reset to original interface.

Fig. 4.5 Interface for customizing natural language, displaying options for selecting compo-
nents and entering preferences
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The engineering strategy prompt that forms the basis of this interface integrates
the context of the selected component, user inputs, and technical limitations to create
structured prompts for the Large Language Model. These prompts guarantee that any
modifications generated uphold the functionality of the component while adhering to
the specified changes within the constraints of the technical framework. For example,
when Sarah provides her input, the system constructs a prompt for the LLM like this:

System: You are a React component generator. Modify the provided
calendar

component code based on the user's request. The user wants to
change the

'Global GUI'.

s Component Context:

¢ <current code of the calendar component...>

s User Functional Request (What it should do):
o "Display meeting deadlines alongside titles and group events by

project category."

11 User Visual Request (How it should appear):
2 "Utilize bold red text for urgent deadlines and employ distinct
background

13 colors for each project category."

15 Generate the new React component code.

4.3.2 Dynamic Component System

The system for dynamic components facilitates real-time updates for interfaces by
overseeing the generation, assessment, and display of components while the program
is running. At its core is a specialized React! component acting as a link between the
produced interface code and the application’s runtime environment. The management
of runtime components is accomplished through a blend of code evaluation and

dynamic rendering. Upon receiving new interface specifications, the system initially

Thttps://react.dev
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preprocesses the code to ensure compatibility with the runtime environment. This
preprocessing involves managing import statements, resolving dependencies, and
ensuring seamless integration with the application’s current component ecosystem.
The component utilizes Babel® for code transformation and compilation, allowing
it to securely evaluate and execute the produced code. Preserving the state is a
crucial element of the system. While updating components, the dynamic component
system upholds the application’s state through React’s lifecycle methods, ensuring
that user data and interaction states endure through interface updates. The system
incorporates a state tracking mechanism that conserves essential values during
component regeneration. Specifically, component state is managed using React’s
‘useState‘ and ‘useContext‘ hooks. When a component is about to be re-rendered
with new generated code, its current state is serialized to a temporary in-memory
store. After the new component is rendered, this state is restored, ensuring a seamless

user experience without data loss during customization.

Code generation and evaluation take place through a pipeline that guarantees
security and dependability. The generated code is validated prior to being converted
into executable components. The system follows a structured method for creating
components. Initially, code preprocessing manages dependencies and imports to
ensure proper resource management. Subsequently, the code is transformed using
Babel, which converts modern JavaScript features into compatible code. A new
function component is then created through dynamic evaluation, enabling runtime
component generation. Lastly, this newly generated component is integrated into the

React component tree, facilitating rendering within the application’s interface.

Styling and layout control are handled by both inline styles and dynamic CSS
generation. The system accommodates various styling techniques, such as direct style
objects and class-based styling, while maintaining consistency with the application’s
current style system. Style definitions are processed alongside component code to

ensure accurate rendering.

This strategy for managing dynamic components empowers the system to deal
with intricate interface updates while upholding application stability and performance.
The division of responsibilities among component generation, state management,

and style control permits adaptable and dependable interface customization.

Zhttps://babeljs.io
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4.3.3 Study Design
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Fig. 4.6 Examples of calendar interfaces displaying the initial calendar (left) and the target
calendars for simple (top right) and intricate (bottom right) customization assignments.

In order to assess MorphGUI, we carried out a within-subjects study with 18 par-
ticipants who completed two customization tasks of increasing complexity. Figure
4.6 illustrates the initial calendar interface and the desired designs for both simple
and intricate customization tasks. This approach enabled a direct comparison of
participant performance and behavior across varying interface complexities, while
accounting for differences in technical background and LLM experience.

We gathered both quantitative and qualitative data using various methods. Quan-
titative data included System Usability Scale (SUS) scores and task completion
metrics. Qualitative feedback was obtained through open-ended questions in post-
task interviews, focusing on participants’ experiences with the customization process.
Furthermore, we assessed the quality of customization outcomes by comparing the
visual and functional similarities between participants’ created interfaces and the

target designs.

Participants

The study was carried out with 18 participants who were recruited using a mix of
snowball and convenience sampling methods. Table 4.1 displays the breakdown of
our sample in terms of age, professional background, and familiarity with Large
Language Models. The age distribution revealed that 12 participants fell within the
20-30 age bracket, 5 were between 30-60 years old, and 1 was under 20. In terms of
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Table 4.1 Summary of participants in the study (N=18), presenting demographic details,

LLM usage, and levels of experience in UI development.

ID (Age) Profession LLM Usage Exp.” UI Development Exp.”*
P1 (20-30) Technology 0000 | JOlO,
P2 (20-30) Technology o000 OO
P3 (20-30) Technology 0000 | JOlO,
P4 (20-30) Design 0000 X J©)
P5 (20-30) Technology 0000 | JOlO,
P6 (20-30) Technology 0000 000
P7 (20-30) Healthcare 0000 | JOl®
P8 (20-30)  Marketing 0000 00O
P9 (20-30) Healthcare 0000 | JOl®
P10 (20-30) Technology o000 00O

P11 (<20) Other 0000 [ JO10)
P12 (30-60) Other 00O | JO)O,
P13 (30-60) Healthcare [ JO10)0) | JOl®)
P14 (20-30) Healthcare 0000 [ JOJO)
P15 (30-60) Legal | JO10J0) OO
P16 (30-60) Legal OO0 | JO)O,
P17 (20-30) Technology 0000 | 1O,
P18 (30-60) Other | JOlIO)0, | JO)O,

* @ O O O= No Knowledge, ® ® O O= Heard Of, ® ® @ O= Used

Occasionally, ® @ @ @= Regular User

" @ O O= No Knowledge, ® ® O= Basic Knowledge, ® @ @= Profi-

cient,

professional backgrounds, there was a range of diversity, with 9 participants coming

from technology-related fields. The remaining participants represented different

sectors such as legal (2), healthcare (2), design (1), marketing (1), and other fields

(3), offering insights from various professional perspectives. Regarding experience

with Large Language Models, 7 participants mentioned using them occasionally,

while 6 were regular users. 4 participants had no prior exposure to LLMs, and 1 had

only heard about them without direct interaction.
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4.3.4 Method

The research was carried out remotely through video conference calls. At the
beginning, participants were provided with an introduction to the study and were
asked to fill out the necessary informed consent documents. The study was organized

into three distinct stages:

Setup and Training. Prior to engaging with the system, participants were presented
with an open-ended query concerning their preferences and requirements for
customizing the calendar interface. This initial investigation sought to grasp
the users’ anticipations regarding interface personalization without influencing
them with existing solutions, following established HCI methodologies for
user-centered design. Subsequently, upon gathering their responses, partic-
ipants were provided with a brief orientation to the interface customization
system and a concise demonstration to acquaint themselves with the natural

language input mechanism and generation process.

Customization Tasks. The participants undertook two tasks in sequence. Each
participant commenced with the straightforward task and then progressed to
the intricate task. Both tasks had a time limit of 20 minutes and allowed
a maximum of 10 generation attempts. For each task, participants initiated
with the same foundational calendar interface and endeavored to recreate a
specified target design. Participants had the flexibility to revert to previous
versions or restore the original interface at any point. The system recorded all
interactions and generation attempts. The tasks were structured for sequential
completion to enable participants to become accustomed to MorphGUI’s natu-
ral language customization capabilities during the initial task. The consistent
task order ensured that all participants received uniform learning opportunities,
attributing the observed performance enhancements to increased familiarity
with MorphGUI.

Evaluation and Interview. Upon finishing both tasks, participants completed the
System Usability Scale (SUS) questionnaire [127] and engaged in a semi-
structured interview regarding their encounter with the system. The interview
centered on their customization approach, encountered challenges, and recom-

mendations for enhancement.
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Each session had a duration of around 45 minutes (M = 43 minutes, SD = 8
minutes). All sessions were recorded with the participants’ consent for later analysis

of interaction patterns and customization strategies.

Measurements

Throughout the study, we obtained three categories of measurements. Initially,
system logs documented participant actions, such as session length, attempts made
(out of 10 available per task), resets of the interface, reverting to previous versions,
and system errors or warnings. These quantitative measurements offered insight into

participants’ interaction behaviors and system functionality.

Subsequently, upon completing both tasks, participants filled out the SUS ques-

tionnaire to assess the overall usability of the natural language customization system.

Lastly, participants responded to open-ended inquiries regarding their customiza-
tion experience, concentrating on their utilization of natural language descriptions,
encountered difficulties, and recommendations for enhancement. These replies
provided qualitative perspectives on participants’ cognitive models and interaction

approaches.

4.3.5 Data Analysis

Analysis of system logs was conducted to determine the mean session duration,
average number of generation attempts, and frequency of resets and reversions
among participants. These metrics were compared between tasks using paired
t-tests to assess differences in interaction patterns between simple and complex
customization scenarios.

Scores for interface evaluation (on a 0-5 scale) were computed for each com-
ponent and combined into a target adherence score. Mean scores and standard
deviations were calculated for each component category and the overall adherence
score. Pearson correlation coefficients were used to explore the relationships between
participant characteristics (LLM experience, technical background) and customiza-
tion success. Wilcoxon rank-sum tests were utilized for analyzing differences in

performance across groups for categorical variables.
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Responses to the SUS questionnaire were scored following standard procedures.
Raw scores were normalized to a 0-100 scale, with mean scores and standard
deviations computed. These scores were compared to established SUS benchmarks
to assess system usability. Additionally, individual question scores were analyzed to
pinpoint specific usability strengths and concerns.

Qualitative feedback from interviews and open-ended questions was used to
present representative quotes and observations regarding participants’ customiza-
tion strategies and experiences with our system. Results were summarized using
descriptive statistics, and statistical significance, when applicable, was reported at p
<.05.

The final generated interfaces were evaluated against the target designs using a
structured assessment framework that examined layout accuracy, component posi-
tioning, color scheme implementation, navigation functionality, and event display
formatting. These scores were combined to form a target adherence score to assess
participants’ ability to achieve their customization objectives through MoldGUI.

4.3.6 Results

Task Performance
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Fig. 4.7 Event Timeline by Participant with Average Prompt Length and Scores.
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Participants successfully completed both customization tasks, with higher per-
formance on the simple task (M=74.7%, SD=12.9%) compared to the complex
task (M=70.2%, SD=9.6%). Task completion times decreased between the sim-
ple (M=16.7 min, SD=7.4) and complex tasks (M=13.6 min, SD=4.6), suggesting
a learning effect. An overview of task performance and prompt behavior across
participants is illustrated in Figure 4.7.

Interface Generation Patterns

Participants used an average of 5.0 (SD=2.0) generation attempts for the simple
task and 6.0 (SD=1.9) for the complex task. Reset operations were rare (M=1.1,
SD=0.8 per task), while reversions to previous versions were more common (M=2.1,
SD=1.2). Analysis showed no significant correlation between number of generation

attempts and final interface quality (r = .21,p > .05).

Natural Language Input Analysis

Correlation Between Average Scores and Average Prompt Lengths
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Fig. 4.8 Correlation Between Average Scores and Average Prompt Lengths.



4.3 Real-Time GUI Customization with Natural Language 113

Average prompt length increased between simple (M=12.7 words, SD=8.1) and
complex tasks (M=13.3 words, SD=8.1). Optimal results were achieved with de-
scriptions of 15-20 words, with performance declining for both shorter and longer
prompts. Figure 4.8 illustrates the correlation between average scores and prompt
lengths, showing no strong linear relationship between these metrics. Technical
background showed no significant effect on prompt effectiveness (y2(2) = 3.42,
p > .05).

System Usability
Negative Statements (disagree=better)
|
| needed to learn a lot of things before B1% 29% 17%
| could get going with MorphGUI. ’ ' ’
| found MorphGUI very cumbersome to use. 66% W% 17%
1
I thought there was too much  gqge, 1% 0%
inconsistency in MorphGUI ’ ' ’
| think that | would need the support of 50% 29% 28%

a technical person to use MorphGUI. '

| found MorphGUI unnecessarily complex. 61% 28% 1%

|
Positive Statements (agree=better)
I

| felt very confident using MorphGUI 2% 4% H%
I
| would imagine that most people would P 5 o
learn to use MorphGUI very quickly. % 28|k 61%
| found the various functions in o g o
0% 1% 88%
MorphGUI were well integrated. ’ ' ’
| thought MorphGUI was easy to use. 2% 0% 39%
I
| think that | would like to use 6% 50% 4%,

MorphGUI frequently.

100 50 50 100
Percentage

’ Strongly Disagree Disagree Neither agree nor disagree Agree Strongly Agree l

Fig. 4.9 System Usability survey results showing agreement levels with positive and negative
statements about MorphGUI (N=18).

The system achieved a mean SUS score of 68 (SD=12.3), meeting the threshold
for acceptable usability. Highest-rated aspects included “easy to learn” (M=4.2/5)
and well integrated” (M=4.0/5). Lower scores were observed for “technical sup-
port needed” (M=2.8/5) and “system complexity” (M=2.6/5). Figure 4.9 presents
detailed user feedback on various aspects of the system.
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Analysis of Template Usage Patterns

Through our analysis of participants’ interactions with MorphGUI’s natural language
interface, we identified several patterns in how users approached the separation
between functionality (“What it should do”) and styling/layout (“How it should
appear”) instructions. We used a confusion matrix approach to quantify the accuracy
of template usage, as shown in Figure 4.10.
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Fig. 4.10 Confusion matrix showing template usage patterns across participants. The matrix
tracks: (1) True Functionality (TF): Correct placement of functionality instructions in “What
it should do” field; (2) True Styling (TS): Correct placement of styling/layout instructions in
“How it should appear” field; (3) False Styling (FS): Incorrect placement of styling/layout
instructions in “What it should do” field; (4) False Functionality (FF): Incorrect placement
of functionality instructions in “How it should appear” field.

Our analysis revealed several key patterns in template usage, as shown in Fig-
ure 4.10. On average, participants correctly placed M = 3.5 (SD = 0.9) functional-
ity instructions in the “What it should do” field, while correctly placing M = 8.1
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(8D = 4.8) styling/layout instructions in the “How it should appear” field. However,
we observed a consistent tendency to misplace styling and layout instructions in the
“What it should do” field (M = 7.7, SD = 4.7), while functionality misplacements in
the “How it should appear” field were less common (M = 1.5, SD = 1.3).

The most common error pattern was the placement of styling and layout instruc-
tions in the “What it should do” field, with participants (particularly P3, P10, and
P11 with F'S > 12) struggling with button modifications (e.g., “transform buttons to
circular shape™) and component positioning (e.g., “align elements to the left”). This
suggests users tend to think of visual modifications as actions to be performed rather
than appearance specifications.

The secondary error pattern involved functionality descriptions appearing in the
“How it should appear” field, though this was less frequent. These errors typically
involved repetition of functionality requirements (e.g., “‘should show one day at a
time”’) rather than new functional specifications. P9 and P18 showed the highest
rates of this error type (FF = 4 and FF = 5 respectively).

Notably, participants with higher rates of correct styling placement (P1, P4,
P5 with T'S > 12) generally showed lower rates of styling misplacement (F§ < 5),
suggesting that understanding the proper use of the “How it should appear” field
correlates with better template usage overall.
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Impact of LLM Experience

Correlation Between Scores and LLM Familiarity (Combined Tasks)
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Fig. 4.11 Correlation Between Scores and LLM Usage Experience (Combined Tasks) show-
ing no significant relationship (r = -0.03, p = 0.883)

Analysis revealed no significant correlation between participants’ LLM familiarity
and their task performance (r = -0.03, p = 0.883), as shown in Figure 4.11. This
suggests that we cannot conclusively state whether prior experience with language
models impacted or did not impact users’ ability to effectively customize interfaces

using MorphGUT’s natural language interface.

Qualitative Feedback

Qualitative analysis of participant interviews revealed several themes that provide
deeper insights into users’ experiences with MorphGUI and opportunities for system
enhancement. We grouped the responses by five recurring themes, highlighting both
the strengths of the natural language approach and areas where additional support

could enhance the user experience.
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Learning Curve and Initial Experience. Most participants noted an initial ad-
justment period that decreased with system usage. While the interface itself was
considered straightforward, users needed time to understand how to effectively
formulate their customization requests. As P07 explained: “The system isn’t compli-
cated to use, but it would be useful to clarify its usage methods to understand from
the start the level of specificity and complexity [...] needed in the input information
to obtain the desired results.” PO5 similarly noted: “Initially it’s more complicated to
find the most comprehensive way to give instructions to the system, after various

generations it became faster and easier to use.”

Interface Clarity and Input Visibility. Several participants highlighted issues
with input visibility and suggested improvements for interface clarity. A common
concern was expressed by P14: “I would prefer to be able to view the entire text
of the instructions I’'m giving to the Al and to have an example of what I could
write.” PO8 observed that “the most complicated part is understanding how to write
instructions correctly for generating various parts, while understanding how to use

the input system is immediate.”

Request for Examples and Guidance. A recurring theme was the desire for
example prompts and better guidance during the customization process. P16 stated:
“the system works well, but examples with explanatory phrases could be useful to
understand commands more quickly.” P17 suggested to “automate the personaliza-
tion process by adding examples or preset modifications to speed up the operation.”
P10 explicitly requested “examples before modifying something that shows how it
works,” while noting that “using the program often, you learn how to communicate

with it.”

System Effectiveness and Control. Despite initial challenges, participants gener-
ally found the system effective once familiar with it. P18 emphasized: “The system
is absolutely intuitive and allows almost total control with increased use.” P04
provided a nuanced observation: “The interface is quite intuitive to use even though
results can vary based on how a person usually expresses themselves, and can offer a

different experience for all users.”

Suggestions for Improvement. Participants offered several constructive sugges-
tions for system enhancement. P17 and P18 both suggested “highlighting the ele-
ments being modified to better understand how to proceed.” P11 requested ““a signal
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for wrong categories when they don’t appear as I would like,” while P04 suggested

“using keywords to standardize certain functions that allow specific actions.”

These qualitative insights complement the quantitative findings presented ear-
lier and provide valuable direction for future system improvements. The feedback
particularly emphasizes the importance of providing better initial guidance while
maintaining the flexibility and power of natural language interaction. The themes that
emerged suggest that while MorphGUI successfully enables natural language inter-
face customization, additional scaffolding could further improve the user experience,

particularly during initial system encounters.

4.3.7 Summary

In this chapter, MorphGUI was introduced as a framework that utilizes large lan-
guage models to facilitate customization of interfaces using natural language. By
integrating user intent, customization directives at the component level, and dynamic
code generation, MorphGUI empowers users to adjust complex interfaces without
requiring specialized technical expertise. The user study illustrated that participants
could effectively modify a calendar application to align with specific design objec-
tives by articulating their desired changes through natural language commands. The
findings indicate that this approach has the potential to democratize the interface
personalization process, making it more accessible to a broader audience. Neverthe-
less, there are some aspects that warrant further investigation. Providing enhanced
guidance, such as integrated example prompts or clearer instructions, could assist
users in swiftly understanding the system’s capabilities. Moreover, exploring the
performance of this approach across various application domains, types of devices,
and user demographics would help confirm its scalability and resilience. In summary,
MorphGUI showcases the promise of connecting large language models with Ul
customization, contributing to a more comprehensive and inclusive perspective of
interactive experiences. By enhancing the system to better cater to user requirements,
we progress towards empowering individuals to shape their digital surroundings
through natural, intuitive methods.
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4.4 Conclusion

This chapter introduced two complementary approaches that leverage Large Lan-
guage Models to democratize web development and customization through natural
language, addressing the significant technical barriers faced by non-technical users.

The LLM-driven web development method enables users to create websites
through natural language without programming knowledge, employing a template-
based prompting strategy that constrains model outputs for consistent and modifiable
code generation. Key innovations include an efficient modification strategy that
updates only specific code sections rather than regenerating entire documents, multi-
page support with linking capabilities, and iterative refinement that maintains context
across modifications. Through proof-of-concept implementation using GPT-4, we
demonstrated how this approach enables end users to express their requirements
conversationally and refine generated websites without understanding the underlying

code.

MorphGUI complements website creation by providing a framework for cus-
tomizing existing interfaces through structured natural language input. By separating
functional requirements (what it should do”) from visual specifications (how it
should appear”), the system guides users through the customization process while
maintaining interface coherence. Our user study with 18 participants demonstrated
that users could successfully accomplish both simple and complex customization
tasks with high completion rates (74.7% and 70.2% respectively), while the system
achieved acceptable usability scores (SUS=68). Analysis of template usage patterns
revealed that users tend to conceptualize visual modifications as actions rather than
appearance specifications, suggesting opportunities for improved guidance in future
iterations. Together, these approaches demonstrate how Generative Al can transform
web development and customization from technical activities requiring specialized
knowledge into accessible creative processes driven by natural language. Through
user studies and technical evaluations, results show that designing Al collaboration
systems which allow humans to effectively express their intentions through specific
requirements, and aligning the Al realization with these expressions, leads to sig-
nificant improvements in user satisfaction, efficiency, and output quality compared
to traditional systems. By enabling users to concentrate on their conceptual goals

rather than implementation details, these approaches bridge the gap between human
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creativity and technical realization, expanding who can participate in creating and

customizing web interfaces.



Chapter 5

Intuitive Home Control:
Disambiguation Methods for
Everyday Users

Publication notice. The multimodal disambiguation framework described in this
chapter was published as “Enhancing Smart Home Interaction through Multimodal

Command Disambiguation” in Personal and Ubiquitous Computing (Springer, 2024).

In the field of ubiquitous computing, smart environments incorporate networks
of devices and sensors embedded in various components—from light bulbs and
appliances to wearables and the built environment itself. This integration enables
systems to detect and respond to user needs, creating responsive and interactive
living spaces [128, 129]. While smart technologies have diverse applications across
building management [130], infrastructure [131], and healthcare [132], our research
focuses specifically on residential smart home systems. Smart homes integrate Inter-
net of Things (I0T) devices to observe, detect, and control various elements within
the home environment, potentially enhancing quality of life, comfort, and resource
efficiency [41, 133, 42]. However, the adoption of these technologies depends on
several critical factors, including customizability, automation, accessibility, relia-
bility, and low latency [134]—all of which influence users’ willingness to integrate
these systems into their daily lives. Traditional automation systems for smart homes

have predominantly relied on explicit command structures and manual programming,
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exemplified by tools like IFTTT!, or pre-defined scenarios. This approach often
forces users to adapt their communication to system capabilities rather than allowing
systems to accommodate the natural variability of human language and preferences
[31-33]. A significant challenge lies in interpreting commands, particularly when
they contain inherent ambiguities in natural language. This difficulty becomes es-
pecially apparent with subjective requests such as “prepare the living room for a
relaxing evening,” which traditional systems struggle to translate into actionable
environmental adjustments [34-37]. Under-specified commands, while often in-
tuitively clear to humans, present significant challenges for smart home systems,
leading to user frustration when systems cannot effectively handle complex requests
that fall outside rigid command structures [37, 36, 35, 34, 33]. This communication
gap represents a fundamental barrier to natural interaction with smart environments.
Recent advancements in smart home technology have begun exploring the integration
of Large Language Models (LLMs) to enhance system responses to user commands.
Systems like Sasha [38] and SAGE [39] utilize LLMs to improve interpretation and
execution of complex or vague commands. Sasha implements a decision-making
pipeline where critical actions like device selection and routine checks are managed
by an LLM. Similarly, SAGE incorporates personal preferences, physical grounding
(knowledge of home devices and capabilities), and external grounding (awareness of
contextual factors like weather) to provide more nuanced interactions, particularly
for commands requiring contextual understanding. Despite these advancements,
these systems primarily rely on text-based inputs, which may not fully capture users’
intended meanings [31, 40]. Textual descriptions alone often prove insufficient for
conveying complex or subjective concepts that might be more effectively commu-
nicated through visual representation. To address this limitation, we introduce a
multimodal disambiguation approach for smart homes. Our system detects ambiguity
in user commands and, when necessary, generates multiple possible interpretations
presented through both textual descriptions and visual representations. Rather than
immediately acting on its own interpretation, the system presents these options to the
user for confirmation, allowing them to select the option that best aligns with their
intent. By integrating this multimodal interaction with natural language command
systems, we create a more intuitive interface that better mirrors human communica-
tion patterns. We hypothesize that this verbal and visual approach works particularly

well for subjective requests like setting a room’s ambience, where images can provide

thttps://ifttt.com/
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clearer guidance than text alone. To validate this approach, we conducted a study
with seven participants evaluating the effectiveness, efficiency, and user satisfaction
of textual versus visual disambiguation methods. This chapter details our multimodal
disambiguation approach, the implementation of our system, and the results of our
evaluation. We demonstrate how combining the language understanding capabilities
of LLMs with intuitive visual representations can enhance interaction with smart
home environments, making them more responsive to natural human communication

while maintaining precise control over system actions.
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USER: Make the room more cozy

SYS: I'll make the room more cozy...
(X) Lights will be set to a warmer color ( ] [ ]
(X) The temperature will be increased. e 2

USER: Sure, thanks.

Fig. 5.1 The system records a user’s command to ’Make the room cozier,” and then provides,
in this instance, three visual choices to clarify the user’s understanding of cozy.” Once the
user picks their favored atmosphere using an image, the system verifies the completion of
tasks such as modifying lighting and temperature to achieve the desired coziness.
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5.1 Use Case for Interactive Disambiguation

In order to provide additional context and demonstrate the advantages of our method-
ology, we present a use case. The goal of this scenario is to showcase the disparities
in user experience and system efficiency when comparing conventional text-based
techniques with our recommended multimodal disambiguation strategy. Through
the depiction of two situations involving identical users and contexts, we emphasize
the benefits of integrating interactive disambiguation and visual prompts in the in-
terpretation of smart-home commands, as well as the constraints present in current

natural-language systems.

Paul, a graphic designer, comes back home from a highly busy day at
the office. His living room, typically a place of peace, seems bare and
unwelcoming. Wanting a tranquil environment to relax, Paul looks to his
new smart home system, aiming to turn the area into a haven of serenity.
He speaks the command, “Set a relaxing mood in the living room.” The
system, programmed to understand such directives, acknowledges the
vagueness in Paul’s statement. ’Relaxing’ could have various meanings
for different individuals — some may seek comfort in subdued lighting
and gentle music, while others might favor the coziness of a simulated

fireplace.

Utilizing Multimodal (Image and Text) Interaction: The system initi-
ates its Multimodal Concept Disambiguation procedure. It deduces that
the visual modality may be appropriate for clarifying the user request
and promptly generates a series of images, each illustrating a distinct
interpretation of what a ’relaxing mood’ might involve. One image
portrays the room illuminated with soft, warm lighting accompanied by
gentle music notes in the background, another displays a cozy arrange-
ment with a virtual fireplace and ambient lighting, while a third image
highlights a more natural environment with green tones and nature
sounds. Paul, observing these choices on his smart TV, is immediately
attracted to the image of the room featuring the virtual fireplace. It
aligns with his concept of a tranquil evening - the warmth of the fire, the
gentle flicker of flames, creating a calming visual and auditory sensation.

He chooses this image, effectively conveying his preference without the
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necessity for elaborate descriptions. The system, after receiving Paul’s
selection, takes action. It adjusts the room’s lighting to mimic the warm
glow from the selected image, turns on the virtual fireplace on the large
screen, and even subtly modifies the room’s temperature to enhance the

sense of warmth.

Utilizing Text-Only Interaction: In the absence of detecting ambigu-
ity or seeking clarification, the system lacks the necessary context to
interpret Paul’s concept of “relaxing.” It chooses a standard action
— dimming the lights and playing soft instrumental music. While this
response falls within the realm of what could be perceived as relax-
ing, it does not completely match Paul’s personal preference for the
evening. Subsequently, Paul decides to enhance the directive to improve
the communication of their specific desires to the system. Paul issues
another directive, “Increase the warmth of the lighting and add a visual
element like a fireplace.” The system responds by marginally enhancing
the warmth of the lighting but encounters difficulty with the abstract
notion of incorporating a 'visual element like a fireplace.” It understands
this as showing images of fireplaces on the smart TV in the living room
rather than creating an immersive fireplace experience. Despite the
room now having warmer lighting and fireplace images, it still lacks
the cozy, immersive atmosphere Paul had envisioned. The system’s
constraints in comprehending and translating Paul’s intricate request
become apparent. Paul makes another attempt, refining their directive:
“Replicate the lighting to imitate a fireplace’s glow and play fireplace
sounds.” On this occasion, the system adjusts the lighting to a flickering,
orange hue and plays crackling fire sound effects. While this is closer to
Paul’s ideal scenario, the experience still feels somewhat artificial and

lacks the seamless integration of visual elements that Paul seeks.

Throughout these iterative refinement cycles, it becomes evident that the text-only

system, despite its advancements, encounters significant challenges in accurately

interpreting and executing more subjective, nuanced commands. Each refinement

brings Paul closer to their desired outcome, yet the process is time-consuming

and somewhat frustrating, emphasizing the system’s limitations in understanding

and fulfilling the complete range of human preferences without additional, more
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specific input. This series of refinements underscores a crucial limitation of text-only
commands: they frequently struggle to convey the depth and complexity of visual
information. While Paul knows what he desires, expressing it in words that the
system can precisely interpret proves to be challenging. Each iteration, although
approaching the desired outcome, demands effort and precise language that may not

be intuitive for all users.

In comparison, a multimodal approach that integrates visual and textual cues
for disambiguation permitted Paul to directly choose an image that encapsulates
his concept of a serene environment. Visuals can communicate nuances like color,
intensity, motion, and ambiance more promptly and comprehensively than text.
This not only could have saved time but also removed the need for guesswork and
iterative refinement inherent in text-only commands, resulting in a more efficient and

gratifying user experience.

5.2 Method

Upon completion of the figure display, the proposed multimodal disambiguation
system’s architecture, as illustrated in Figure 5.2, employs a unified and flexible
methodology for understanding and reacting to user directives. By possessing the
ability to learn and adjust iteratively, the system presents a smart-home framework

that comprehends and evolves alongside the user’s distinct preferences and behaviors.

Context Store: The Context Store acts as a central storage unit within the
smart home Al infrastructure, storing data obtained from user engagements and
environmental information. It is maintained and updated through an LLM, which is
designed to process and enhance the information via structured inquiries. To provide
technical clarity, the Context Store is implemented as a versioned JSON object. This
format allows for a structured representation of the home environment, device states,

and user preferences. An example structure is as follows:

"version": 3,

"home_layout": {
"living_room": ["light_1", "thermostat_1"],
"kitchen": ["light_2", "smart_plug_1"]
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Fig. 5.2 The diagram illustrates the process in which the Al interacts with a user to resolve
ambiguous instructions in a smart home scenario. The Al receives input from the user and
the context store, seeks advice from the concept advisor to generate a concept based on the
environment, and then stores this concept. The Concept Disambiguation module utilizes
LLMs to offer the user different modalities (text or image) to represent the concept, from
which the user chooses for the Al to act upon, thereby completing the feedback loop of
comprehension and action within the smart home environment.

1,
"devices": {
"light_1": { "type": "hue", "state": "on", "brightness": 80 1},
"thermostat_1": { "type": "nest", "state": "on", "temp_c": 21 }
1,

"user_history": [ ... ]

When a user command leads to a state change, the backend generates a new, versioned
JSON object representing the updated context. This object is then sent to the frontend,
which triggers a re-render to ensure the Ul always reflects the current state of the
smart home environment.

Specifically, the suggested system incorporates multiple interconnected compo-

nents for interpreting, clarifying, and executing user directives, which include:

Context Advisor: Leveraging the capabilities of LLM, the Context Advisor
suggests ideas that closely match the user’s surroundings and requests by utilizing
data sourced from the Context Store. Functioning as a pivotal intermediary, the
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Context Advisor transforms extensive contextual data into practical insights. This
process is vital for merging the context with the disambiguation results, guaranteeing
that the system’s reactions and operations are pertinent and tailored to the individual
user’s requirements and inclinations. The LLM evaluates the context based on the
user’s directions to ensure that the AI’s comprehension aligns with the user’s factual
conditions and preferences. This interplay between the Context Store and the Context
Advisor is crafted to be flexible, enabling the system to adjust to the user’s evolving
needs and enhance the context over time. Structured inquiries are employed to

extract data from the Context Store, resulting in a more context-specific knowledge.

Over time, as the user engages with the system and their living environment
changes, the data in the Context Store is continually updated. This strategy is
crucial for maintaining a responsive smart home system that is sensitive to the user’s
needs, offering personalized responses and actions that are relevant to the user’s

requirements and present circumstances.

Concept Store: The Concept Store, distinct from the Context Store, is focused
on storing user-selected interpretations and their representations, essentially creating
a 'memory’ of user preferences. While the Context Store deals with environmental
data, the Concept Store plays a significant role in modeling user interactions and
preferences, ensuring that future system responses closely match the user’s past
choices and expectations. This distinction enhances the system’s ability to predict

and respond accurately to user commands.

Concept Disambiguation: The Concept Disambiguation subsystem of the
smart-home Al utilizes an LLM to clarify ambiguous user commands. It is the
central component of the proposed method, positioned closer to the user. To resolve
ambiguities, the subsystem follows a multi-step process: beginning with a prompt
designed with a dataset of ambiguous commands tailored for smart homes, the system
categorizes these commands based on their levels of ambiguity. For commands where
visual cues can aid in clarification, the system generates unique, non-overlapping
visual cue descriptions and corresponding Al-generated images. Users then choose
the image that best matches their intention, enabling the Context Advisor to create a
customized policy for home automation. The intricate details of this process will be

further explained in the subsequent.
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5.3 Concept Clarification

The subsystem for Concept Clarification is central to our smart-home Al, utilizing
Large Language Models (LLMs) to clarify human commands. By understanding
user intent, it ensures that every instruction is fully understood and translated into
actions that align with the user’s true intentions. It comprises five sub-components

and mechanisms that provide this understanding to the system:

Multimodal Selection for Resolving Ambiguity We compiled a dataset of 55
real-world smart home command instances, covering both ambiguous directives
like “establish a soothing atmosphere in the kitchen” and straightforward commands
like “turn on the kitchen lights.” Each instance is tagged with potential ambiguity
indicators and the recommended mode for clarification (text, image). To test zero-
shot inference, we examined the capability of a large language model to classify the
commands as ambiguous or unambiguous without any prior exposure to this dataset.
Despite lacking training, the model achieved 70% accuracy in line with human
assessments, showcasing reliable detection of ambiguity even in unfamiliar directives.
This dataset will facilitate further exploration into multimodal clarification systems.
To enhance the smart-home system’s capacity to handle ambiguous directives, a
crucial step involves evaluating each directive in the dataset to determine if visual
cues can effectively resolve ambiguities. For every directive identified as ambiguous
in our dataset, an additional assessment is carried out to ascertain if visual cues
are a suitable approach for clarification. Indeed, certain ambiguities may be more
effectively resolved through additional textual details or alternative methods. This
strategy aims to utilize the most suitable mode for each specific scenario, thereby

improving the system’s responsiveness to user directives in an optimal manner.

Creation of Non-Overlapping Visual Cue Captions When a command in our
dataset is identified as needing visual clarification, our system follows a procedure to
produce unique, non-overlapping visual cue captions. This process aims to present
various interpretations for the ambiguous concepts. We employ a Large Language
Model (LLM) to generate captions that provide distinct interpretations. To assess the
LLM’s ability to generate diverse concepts, we compared the generated captions with
those from free generation, using metrics in the embedding space. This comparison
helps determine the extent of semantic variation among the captions. The embedding
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space metrics offer a quantitative evaluation of the diversity in the concepts generated
by the LLM, confirming that the captions capture different facets of the ambiguity.

User Selection and Policy Generation Presented with images or textual descrip-
tions, the user participates in the final act of selection by identifying the depiction
that most closely aligns with their intent. The Context Advisor subsequently creates a
policy that integrates the user’s selection, blending the chosen interpretation with the
smart home’s contextual data. This individualized policy guides the home automa-
tion system, guaranteeing that the user’s initial ambiguous command translates into a
result that aligns with their expectations. Through this approach, our system not only
resolves uncertainties, but accomplishes this by involving the user, gaining insights
from their decisions, and consistently enhancing its grasp of their preferences.

5.4 Implementation

The multimodal disambiguation system was developed utilizing a Python server

backend and React frontend interface.

We utilize the OpenAl API for accessing GPT-42, to classify commands as
ambiguous or not in a zero-shot scenario. The components outlined in our design are
coordinated using the LangChain® framework. Distinct captions are produced using
GPT-4 and assessed using embedding space metrics to confirm diversity. Utilizing the
captions, we utilize DALL-E 3* to create corresponding images illustrating potential
visual disambiguation choices. The setup involves a React frontend® enabling users
to choose the textual or visual option that best aligns with their intention. The system
as a whole is structured for flexibility. As newer language or generative models
become available, they can be seamlessly integrated to improve disambiguation
accuracy. We aim to make key components open-source to facilitate further research.

2https://openai.com/api/
*https://github.com/LangChain/langchain
“https://openai.com/dall-e
Shttps://react.dev
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5.5 User Study

A user study was carried out to assess the efficacy of the disambiguation method
and the appropriateness of the visual and textual representation produced in smart
homes. Seven participants with diverse backgrounds were involved in the study. The
evaluation included both quantitative and qualitative assessments. Quantitatively,
participants provided ratings on the system’s responses regarding intent alignment
and effectiveness.

Qualitatively, participants shared their feedback and opinions following interac-
tions with the system. They deliberated on their preferences between textual and
visual outputs, the system’s ease of use, and their overall satisfaction with its perfor-
mance. This feedback provided deeper insights into the user experience, emphasizing

the practical implications of the system’s performance and areas for enhancement.

5.5.1 Procedure

Prior to the experiment, participants were evaluated for their familiarity with smart
home systems, including any prior interactions with voice or text-based assistants
such as Alexa or Google Assistant. They were queried about their expectations
regarding usability, responsiveness, and accuracy in these systems, as well as their
communication preferences with smart devices.

Subsequently, participants were presented with a sequence of vague commands in
natural language for execution. Examples of these commands included, for instance,
“Create a relaxing ambiance when I arrive home,” “Turn on the lights if a child
enters the house,” or “Set romantic lights in the kitchen.” Following each command,
participants were provided with options to disambiguate, involving the use of either
images or textual descriptions, and the system’s response was assessed based on how

closely it matched their expectations.

To ensure a fair comparison between the two modalities, the sequence in which

the instruction modes were presented was counterbalanced across participants.

During the post-experiment phase, participants reflected on the system’s re-
sponses and deliberated on the efficacy of the modality they utilized. They juxtaposed

their experiences with textual and image-based responses, expressed their perspec-
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tives on usability, and put forward suggestions for enhancing future interactions with

smart home systems.

5.5.2 Participants

# | Age Occupation Gender Familiarity with Smart Home Sys-
tems

P1 | 24 Early childhood educator Female  Very little, used specifically rather
than in daily activities.

P2 | 27 Software engineer Male Limited to Smart TV and phone as-
sistant, not used for house control.

P3| 25 Photographer Female  Aware of systems but no personal use
or knowledge.

P4 | 29 Management assistant Female Knowledgeable about multiple func-
tionalities, used Alexa for music.

P5 | 23 Student Male Limited familiarity, used Google
Home for music.
P6 | 34 Early childhood assistant Female Limited familiarity, used Google
Home for music.

P7 | 28 Software engineer Male Familiar with IoT aspects of smart
home systems.

Table 5.1 User study’s participants

Participants were recruited through convenience and snowball sampling methods
by sending private messages to social circles. To ensure a balanced population,
potential participants were asked to complete a demographic survey to minimize
self-selection bias. A total of seven participants were selected, representing a diverse
demographic in terms of age, gender, and familiarity with smart home systems. Prior

to the study, participants signed an informed consent form.

The age range of the participants ranged from 23 to 34 years. Gender distribution
included both male and female participants to ensure a balanced representation. The
study was conducted in Spanish, the native language of all participants.

Participants showed a wide range of familiarity with smart home systems. Some
had limited interaction, using smart home systems for specific tasks rather than in

their daily routines, while others were more experienced and regularly used devices
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such as Smart TVs, phone assistants, and features like Alexa for music. This diversity
in familiarity levels provided valuable insights into user interactions with smart home
systems during the experiment.

Table 5.1 summarizes the participant profiles, offering a concise overview of

their demographics and experience with smart home systems.

5.6 Results

5.6.1 Analysis of Quantitative Results

The study sought to evaluate the correspondence between the system’s reaction and

the user’s intention, as well as the effectiveness of each mode.

Users evaluated the system’s reactions on a scale ranging from 1 to 5, where 1
indicated the lowest effectiveness and 5 indicated the highest, in relation to intent
alignment and efficacy. Intent alignment refers to the extent to which the system’s
disambiguation matched the user’s genuine intention, while efficacy relates to the

overall effectiveness and usefulness of the response.

The analysis showed that in the visual modality, the mean intent alignment score
was 4.07 +0.73, and the mean efficacy score was approximately 3.43 4 1.28. On the
other hand, the textual modality had an average intent alignment score of 4.00 + 1.04
and an average efficacy score of 3.86 - 1.29. The results, as depicted in Figure 5.3,
reveal slight differences in both intent alignment and efficacy between the two
modalities. Although the visual modality displayed slightly higher intent alignment,
the textual modality exhibited slightly greater efficacy. Nevertheless, these variances
are not significant, indicating that neither modality consistently surpasses the other
in these aspects. The study noted that both modalities were generally effective, with
minor discrepancies in specific scenarios. The textual modality was praised for its
straightforwardness and clarity, while the visual modality offered a more instinctive

and visual approach to interacting with the smart home system.

This outcome implies that the selection between textual and visual modalities may
rely more on the specific context and user preference rather than a clear advantage of
one over the other. For example, the textual modality, with its slightly higher efficacy,
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Fig. 5.3 Alignment of intentions and efficacy for disambiguation results using both text and
images.

could be more appropriate for situations where precision and explicit instructions

are crucial.

On the flip side, the visual modality, which exhibited slightly higher intent
alignment, may be more efficient in scenarios necessitating a more comprehensive
or subjective understanding, like creating a specific atmosphere or setting a mood
in a space. These results endorse the notion that in situations where the objective is
more about establishing a vibe or an experience rather than carrying out a precise
task, the visual cues provided by the visual modality can offer a more intuitive and
thorough grasp of the user’s intent. Additionally, this modality plays a crucial role
in clarifying concepts that may not be easily conveyed or articulated through plain
language. For example, communicating the idea of “coziness” or “relaxation” can
be more effectively accomplished through visual means rather than text, as these
concepts can have diverse interpretations that are more effectively captured visually.
This capacity to bridge the communication gap where language may be inadequate
renders the visual modality a valuable asset in improving user interaction with smart

home systems.

5.6.2 Evaluation of Qualitative Findings

Consistency with User Intentions To guarantee user contentment with the disam-
biguation system, it is imperative that the system’s selections closely align with the
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users’ true intentions. After conducting our experiment, we carried out interviews to

assess if the system’s disambiguation accurately mirrored users’ underlying intent.

Generally, participants expressed a high degree of satisfaction with the system’s
alignment with their instructions. Participant 1 (P1) encapsulated this viewpoint,
observing that while the responses were typically satisfactory, there were instances
where further clarification was needed. This suggests an overall favorable interaction

with the system, albeit with opportunities for enhancing understanding of user intent.

Issues of accuracy and specificity were highlighted. For instance, Participant 3
(P3) remarked that the system’s responses were occasionally lacking in specificity:
“I think the system’s response was good on average but it wasn’t specific enough
with some of the commands” (P3).

Concerns were also raised about the system’s ability to accommodate varying
perspectives. P1 noted the system’s shortcomings in representing different yet
conceptually similar situations, using temperature as an illustration, “Ineffective that
it does not vary perception, vibrating temperature is 21C, comfortable temperature
is 21C” (P1). This feedback emphasizes the necessity for context-aware responses

from the system, capable of distinguishing subtle discrepancies in user instructions.

Effectiveness of Responses The participants’ experiences also shed light on the
balance between automated responses and user expectations. While the system
generally aligned with user intentions, it occasionally required further input or
correction from the user to fully understand the intended command. This aspect of
interaction indicates a need for continuous learning and adaptation in smart home

systems to ensure they evolve in better understanding and anticipating user needs.

While the alignment with user intentions focused on the system’s ability to match
the user’s true intention after the disambiguation process, the system’s response

effectiveness was evaluated based on how well it executed user commands.

Participant 2 praised the system for its prompt response time and user-friendly
interface; the ease of selecting options significantly influenced their positive evalua-
tion, stating, “One of the particular aspects that I consider effective is the response

time and the intuitiveness to select any option”.

Participant 4 offered a more nuanced perspective, recognizing the system’s skill in

integrating control across multiple devices, which improved the overall effectiveness
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in establishing a unified environment: “Mixing multiple devices even if they were
not in the same room was effective”. However, Participant 4 also observed the
presence of options that appeared unrealistic or impractical, suggesting that while the
system excelled in complex integration, it sometimes struggled to provide realistic

or feasible solutions.

These viewpoints underscored that the effectiveness of smart home systems relies
on the responsiveness and intuitiveness of the interface, the system’s contextual
awareness and precision in representing available features, and the practicality of the

options it offers.

Ease of Use The discussion on user-friendliness indicated that participants gen-
erally perceived the system’s modalities as easy to use, although their preferences
differed depending on the task and individual inclinations.

Participant 6 (P6) emphasized the intuitive aspect of both visual and textual
modalities. They noted that the combination of these modalities helped in reaching
a more precise answer, suggesting that integrating various forms of information
presentation could improve user comprehension and system efficiency. This per-
spective emphasizes the advantages of multimodal interfaces in smart home systems,
providing users with a more comprehensive and accessible means of engaging with

the technology.

Nevertheless, user preferences concerning modalities varied. Participant 1 (P1)
expressed a partial preference for images, acknowledging their general usefulness
while noting that they may not always capture all aspects of their thoughts. This
observation underscores the limitations of visual representations in conveying com-
plex or abstract concepts, which are crucial in situations requiring precision and

thoroughness.

On the contrary, Participant 4 (P4) exhibited a distinct preference for text, citing
its capacity to articulate intricate ideas that images may struggle to interpret effec-
tively. This preference underscores the strengths of textual information in delivering
detailed and specific instructions or descriptions, which play a vital role in ensuring

accurate system responses, especially in complex scenarios.

The research demonstrates a varied landscape of user preferences and perceptions

concerning the usability of smart home system modalities. While there is a general
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trend favoring the intuitive nature of images and text, individual preferences differ
depending on the context and information conveyed. This diversity highlights the
significance of customizable and adaptable smart home systems that can meet various
user needs and preferences by offering different modalities or a combination of them

to improve user experience and system efficiency.

Comparative Perception Through a Comparative Perception evaluation, insights
were obtained on users’ preferences between textual and visual modalities, revealing
differences in how individuals resolve ambiguities. Participant 2 (P2) expressed
a stronger preference for the text modality, attributing it to the specificity and
clarity it offers. They indicated that textual information provided a more detailed
understanding of the system’s functionality, stating, “Even though I consider myself
a visual reception person, I felt more comfortable with the text modality because
it was more specific and, in my opinion, it was clearer what the system was going
to do.” This preference underscores the importance of precise and comprehensive
communication in smart home systems, especially in understanding user command

implications.

In contrast, P3 held the belief that images were more effective, particularly for
users who find visual examples easier to understand than textual descriptions. This
viewpoint is in line with the concept that visual representations can simplify complex
ideas, making them more accessible and easier to grasp for specific users “I think
images are more effective because for some people it’s easier to understand something
if shown visual examples than text that could be interpreted in different ways.” P3’s
perspective emphasizes the potential of images to bridge gaps in comprehension,

especially in situations where text may have varying interpretations.

These differing opinions demonstrate the diversity in user preferences and cogni-
tive styles. While P2’s inclination towards text over images, despite being visually
oriented, demonstrates a nuanced approach to information processing, P3’s focus
on the effectiveness of images for certain users highlights the broad appeal and
accessibility of visual representations.

User preferences for modalities are not always straightforward and can be in-
fluenced by factors beyond primary learning styles. This implies that smart home
systems should be adaptable and versatile, providing both textual and visual modes

to meet the varied needs and preferences of users. This adaptability could play a
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crucial role in improving user experience and ensuring that interactions with the

system are intuitive, efficient, and tailored to individual user preferences.

Recommendations and Enhancements The discussion yielded a range of valu-
able suggestions from participants, reflecting their expectations from the smart home

system.

P1 suggested a hybrid approach, recommending the integration of textual de-
scriptions with images. This proposal is particularly insightful as it addresses the
limitations of both modalities when used independently. By combining images with
descriptions, the system can provide both the clarity and specificity of text with
the intuitive appeal of visuals: “Images should come with a description, the best of
both worlds.” This strategy could be especially advantageous in situations where
complex ideas or instructions need to be communicated, ensuring that users gain a
comprehensive understanding of the system’s responses while retaining the ease of

disambiguation with visual cues.

PS5 concentrated on the aesthetic aspect of images, highlighting the significance
of their visual appeal and accuracy in representation. P5’s suggestion underscores
the importance of aesthetic design in user experience, where visually appealing
images can enhance engagement and satisfaction. Furthermore, ensuring that images
accurately depict the intended concept or action can prevent misunderstandings and
improve the system’s effectiveness: “Put images that are pleasing to the eye and that

do not alter perception.”

P7 emphasized the necessity for a wider variety of options in image-based
responses. By expanding the pool of images available for selection, the system can
provide a more nuanced array of choices, catering to diverse user preferences and
scenarios. Allowing users to choose multiple images could facilitate a more detailed
and personalized interaction with the system, as users could combine different
elements to better suit their needs: “Expand the number of images, allowing you to

select a maximum of two images at a time.”

The recommendations provided by participants highlight a distinct need for a
smarter, more user-friendly, and visually appealing interface in smart home systems.
The enhancement of textual descriptions alongside images, improvement in image
quality, and expansion of selectable options have been identified as crucial areas for

enhancement. The implementation of these modifications has the potential to greatly
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increase user satisfaction and enhance the system’s overall effectiveness, resulting in

improved adaptability and responsiveness to individual user requirements.

5.7 Conclusions

As smart home systems become more prevalent, there is an increasing demand for
more user-friendly interaction methods. Traditional natural-language systems often
struggle to understand ambiguous, subtle, and subjective commands, resulting in user
dissatisfaction and suboptimal outcomes. Our proposed multimodal disambiguation
approach tackles these challenges by integrating a system with ambiguity detection,
separate textual and image generation, and user-driven concept selection between
visual or textual representations. Quantitative and qualitative analysis from a user

study showed overall effectiveness while also identifying areas for improvement.

However, the study also revealed important limitations and areas for future work.
A key challenge is the system’s reliance on visual representation for disambiguation,
which is less effective for intangible or non-visual attributes. Concepts like temper-
ature, humidity, or abstract states like “security level” lack a clear, singular visual
metaphor. While the system excels at representing ambiance (lighting, colors), future
work must explore hybrid representations, such as overlaying textual data or icons
(e.g., a thermometer with “21°C”) onto generated images to effectively communicate

these intangible states.

Furthermore, the current system is reactive, responding only to direct commands.
A significant extension would be to support proactive, rule-based conditions (e.g.,
“when I arrive home after 8§ PM, make the living room cozy”). This would require
enhancing the natural language processing to parse conditional logic and imple-
menting a new module to store and trigger these rules based on contextual cues like
time or user location. Such an extension would transform the system from a simple

command interpreter into a more sophisticated home automation engine.

Finally, it is crucial to analyze scenarios where visual disambiguation may
be unnecessary or even counterproductive. For simple, unambiguous commands
(“turn on the kitchen light”) or for expert users who can issue precise instructions,
the disambiguation step introduces unneeded friction. Future iterations should

incorporate a confidence score for the initial command interpretation; only when
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the confidence is low would the visual disambiguation be triggered. The system
should also always provide a manual override, allowing users to bypass the visual
selection and enforce a direct command, ensuring that the system enhances, rather

than hinders, user efficiency.

Expanding the command dataset and disambiguation options could provide
a wider range of scenarios and choices. Fine-tuning through further real-world
testing would enhance components such as the caption generation model and the
display of the multimodal interface. We need to tackle the difficulties of conveying
complex ideas through each modality and incorporating choice selection with home
automation policies. Ultimately, future systems should prioritize adaptability to
various environments, command structures, user requirements, and preferences. In
summary, we have showcased the potential of ambiguity detection and multimodal
interaction techniques that merge textual and visual cues to enhance the usability
and precision of smart home control. We anticipate that our research will encourage
broader adoption and community advancement in this intersection of Al, HCI, and

ubiquitous computing.



Chapter 6
Discussion and Future Work

This dissertation has presented several novel approaches to lowering technical bar-
riers for creating and customizing interactive systems through Generative Al. This
chapter discusses common threads and patterns across these domains, examines

limitations of our approaches, and outlines promising directions for future research.

6.1 Common Themes and Design Principles

Across our studies in the distinct domains, clear patterns emerged in how Generative
Al transforms creation processes. We identified several principles that transcend
specific applications and point toward a more general framework for Al-assisted

creation and customization.

Bridging Domain Knowledge and Technical Implementation Our research
reveals a critical insight for bridging domain expertise and technical implementation:
Al systems must not only substitute for the knowledge users lack but must structure
the control flow to mirror how genuine experts in that domain would work. This
dual requirement—providing missing expertise while preserving authentic expert
workflows—ensures users maintain meaningful control throughout the creation

process.

When educators use our tutoring system tools, the Al does not merely generate

interfaces based on pedagogical requirements; it structures the decision-making
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process to follow how instructional designers actually work—moving from learning
objectives to content scaffolding to interaction design. Similarly, our design-to-code
systems preserve the natural progression that web developers follow, from structure
to style to interaction, rather than forcing designers to adapt to artificial technical

sequences.

This mirroring of expert workflows proves crucial for effective knowledge sub-
stitution because it allows domain experts to apply their judgment at the same
intervention points where professionals in the missing knowledge domain would
make critical decisions. By structuring Al assistance to follow authentic expert
processes rather than technical conveniences, users can stay firmly grounded in

familiar territory while the system handles unfamiliar aspects.

The effectiveness of this approach manifests in how users maintain agency despite
significant knowledge gaps. When the control flow aligns with real expert practices,
users can make informed decisions by applying their existing domain knowledge
to each step, even when the technical implementation details remain hidden. This
alignment between system flow and expert practice creates a natural scaffold that
extends users’ capabilities while preserving their sense of control and ownership

over the final product.

Balancing Automation and Control A consistent theme across our contributions
is the practical balance between automation and user control. Our approach scaf-
folds the creation process through step-by-step guidance rather than attempting full

automation, preserving user agency while removing technical barriers.

In our MorphGUI system, this balance manifests through structured templates
that guide users’ natural language customization requests while providing real-time
visual feedback. Users maintain control over desired outcomes but do not need to
understand underlying implementation details. Similarly, our Design2Code approach
enables designers to rapidly prototype functional interfaces by automatically trans-
lating visual designs to code, while preserving their creative control through style

references and sketch annotations for dynamic behaviors.

For educators creating tutoring systems, our decomposition of high-level goals
into explicit pedagogical steps creates a scaffolded creation process where Al han-

dles technical implementation while educators maintain control over instructional
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strategy. Rather than forcing adaptation to technical constraints, the system adapts to

educators’ pedagogical intentions through preference-driven refinement.

This scaffolded approach to balancing automation with control offers practi-
cal advantages over both fully automated systems and traditional technical tools.
By providing immediate visual feedback during the creation process, users can
iteratively refine their intentions without switching contexts between design and

implementation.

The result is a new interaction paradigm where domain experts can focus on
their areas of expertise—whether pedagogical strategy, visual design, or desired
functionality—while the system handles the technical translation into functional

implementations.

Multiple Pathways to Expression A significant finding across our research is
the value of providing multiple modalities for expressing intentions, each aligned
with the natural cognitive frameworks and domain expertise of different user groups.
Traditional development environments impose a uniform, technically-oriented ex-
pression method—typically code writing—which forces users to translate their

domain-specific mental models into programming constructs.

For educators creating tutoring systems, we observed that their expertise mani-
fests primarily through instructional sequencing and pedagogical strategy rather than
interface specifications. By providing visual selection of design alternatives instead
of requiring written specifications, we enabled a form of expression that aligns with
educators’ evaluative expertise—their ability to recognize effective teaching inter-
faces even if they couldn’t articulate formal design principles. This visual selection
pathway preserves the nuanced pedagogical judgment educators have developed
through practice while bypassing the technical design vocabulary they typically lack.

For designers, we enabled a multi-layered expression approach through sketches
(for structural elements), reference images (for style attributes), and symbolic anno-
tations (for interactive behaviors). This separation of concerns allows designers to
leverage their existing visual thinking processes and established design languages
without requiring them to mentally translate these concepts into programming con-
structs. The separation proved particularly valuable for exploring design alternatives,

as designers could rapidly iterate on different aspects of the interface indepen-
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dently—changing structural layouts without disrupting style choices, or modifying

interactive behaviors while maintaining visual consistency.

For end-users customizing applications, we facilitated natural language expres-
sion structured through guided templates. This approach acknowledges that while
end-users may not possess technical vocabulary, they have sophisticated models
of their own needs and preferences that can be articulated conversationally. The
structured guidance serves as a scaffolding that helps bridge between everyday lan-
guage and system capabilities without requiring users to learn a formal specification

language.

In smart home environments, our research revealed the limitations of purely tex-
tual communication for subjective concepts. By supplementing language with visual
disambiguation options, we discovered that certain qualities are more efficiently
communicated through exemplars than descriptions. This visual pathway allows
users to externalize aesthetic and emotional intentions that would otherwise require

extensive verbal elaboration.

The cognitive implications of allowing users to express intentions through modal-
ities aligned with their expertise, benefits the preservation of domain complexity and
enables a more democratic technological landscape where diverse forms of expertise
can directly shape digital artifacts. Unlike simplified “beginner” interfaces that often
flatten rich domain knowledge into limited options, our multi-pathway approach
maintains the sophisticated nuances of different expertise areas. Educators can apply
complex pedagogical principles, designers can implement subtle aesthetic judgments,
and end-users can express contextual preferences—all without these being reduced
to the lowest common denominator of what’s easily expressible in code.

6.2 Limitations and Challenges

While our research demonstrates significant promise for Generative Al in lower-
ing technical barriers, several important limitations and challenges remain to be

addressed.

Model Capabilities and Knowledge Boundaries Current Generative Al models,

including those employed in our research, have inherent limitations in their knowl-
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edge and capabilities. They may generate incorrect or outdated code, misunderstand
domain-specific terminology, or produce outputs that appear plausible but contain
subtle errors. These limitations are particularly challenging in technical domains
where precision is essential. While our approaches incorporate various guardrails
and feedback mechanisms to mitigate these issues, the fundamental limitations of
underlying models remain a significant constraint. Future improvements in model
capabilities, domain-specific fine-tuning, and retrieval-augmented generation could
help address these limitations, but complete elimination of errors is unlikely in the
near term. This suggests a continued need for human oversight and verification,

particularly for critical applications.

Explainability and Transparency Many of our approaches use complex Gen-
erative Al models that lack transparency in their reasoning processes. This “black
box” nature can make it difficult for users to understand why particular outputs were
generated or how to effectively guide the system toward desired outcomes. While
our approaches provide user control, they do not fully address the explainability
challenge. Users may still struggle to understand model limitations or effectively
diagnose and correct issues when outputs do not meet their expectations. Future
research should explore methods for improving model explainability and provid-
ing users with clearer insights into the generation process. This might include
exposing confidence scores, highlighting reference sources, or providing alternative

generations with explanations of their differences.

Evaluation Challenges Evaluating Generative Al systems for interactive system
creation presents unique challenges. Traditional metrics like accuracy or error rates
are insufficient when outputs have subjective quality dimensions and must satisfy
both functional requirements and user preferences. Our user studies provide valuable
insights into effectiveness, efficiency, and satisfaction. However, it is important to
explicitly acknowledge that these studies were conducted with small sample sizes,
which limits the statistical power and generalizability of our findings. While insight-
ful, the results should be considered preliminary. Future work must involve larger
and more diverse participant pools to validate these initial findings. Furthermore,
longitudinal studies would be necessary to assess long-term adoption and impact.
Additionally, it remains challenging to isolate the effects of different system com-

ponents or compare approaches on a level playing field given their different target
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users and contexts. Future research should develop more comprehensive evaluation
frameworks specifically designed for Generative Al systems in interactive contexts,
incorporating both objective metrics and subjective assessments across multiple

dimensions of quality.

Ethical Considerations The use of Generative Al in lowering technical barriers
raises important ethical considerations regarding authorship, responsibility, and
accessibility. As systems increasingly generate complex artifacts based on user input,
questions arise about attribution, ownership, and accountability for the resulting
outputs. There is also the risk that reducing technical barriers might lead to a
proliferation of low-quality or problematic systems if users lack understanding of
best practices in design, accessibility, or security. While democratizing creation is a
worthy goal, it must be balanced with appropriate guidance and safeguards. Future
research should explicitly address these ethical dimensions, developing frameworks
for responsible use of Generative Al in system creation and customization, and

incorporating ethical guidelines directly into system design.

6.3 Future Research Directions

Based on our findings and the limitations discussed above, several promising direc-

tions for future research emerge.

Integration Across Creation and Customization Workflows Our research ad-
dressed creation and customization as somewhat separate processes, but future work
could explore deeper integration between these activities. For example, systems
could preserve the design history and rationale during creation to facilitate more
informed customization later, or customization patterns could feed back into creation
processes to improve initial designs. This integration would better reflect the itera-
tive nature of real-world development, where creation is rarely a one-time activity
but rather an ongoing process interleaved with customization and refinement. By
maintaining continuity across these processes, systems could provide more coherent

support for the full lifecycle of interactive systems.
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Advanced Multimodal Interaction While our research incorporated multiple
modalities for expressing intentions (text, images, sketches), future work could
explore more sophisticated multimodal interaction patterns. This might include
combining speech and gesture, integrating physical manipulation with digital inter-
faces, or developing hybrid approaches that seamlessly blend different expression
modes. Advances in multimodal foundation models that can process and generate
content across text, image, audio, and video modalities offer particularly exciting
opportunities for more natural and expressive interaction. These models could enable
users to communicate their intentions through whatever combination of modalities

feels most natural for a given task.

Collaborative Creation and Customization Our research primarily focused on
individual users interacting with Generative Al systems, but many real-world creation
and customization tasks involve collaboration among multiple stakeholders. Future
research could explore how Generative Al can support collaborative processes,
mediating between different perspectives and helping reconcile potentially conflicting
requirements. This direction might involve developing shared workspaces where
multiple users can interact with the same generative system, explicit support for
role-based access and contribution, or mechanisms for negotiating and resolving

differences in preferences or priorities.

Adaptation and Learning from User Behavior While our systems incorporated
user feedback in various ways, they generally did not adapt their behavior based
on patterns observed across multiple interactions. Future research could explore
how Generative Al systems might learn from user behavior over time, gradually
adapting to individual preferences and working styles. This adaptation might involve
remembering successful patterns, adjusting generation parameters based on past
feedback, or developing user-specific models that capture particular preferences or
domain knowledge. By learning from interaction history, systems could become

increasingly well-aligned with individual users’ needs and expectations.

Expanded Domain Coverage Our research focused on three specific domains,
but the principles we’ve identified could potentially apply to many other domains
where technical barriers limit participation. Future research could explore applying



6.3 Future Research Directions 149

similar approaches to areas such as data visualization, mobile app development,
game design, or scientific computing. Each new domain would likely present
unique challenges and opportunities, requiring adaptation of our general approaches
to domain-specific constraints and user needs. However, the core principles of
balancing automation with control, providing multiple expression pathways, and
bridging domain knowledge with technical implementation would likely remain

relevant across contexts.



Chapter 7
Conclusion

This dissertation has investigated how Artificial Intelligence can lower the technical
barriers for creating and customizing interactive systems across three key domains:
intelligent tutoring systems, web applications, and smart home environments. Our
research introduces novel methods that bridge the gap between domain expertise and
technical implementation, empowering diverse users to translate their intentions into

functional systems without requiring programming knowledge.

For intelligent tutoring systems, we introduced an Al-assisted approach that
empowers educators by automatically decomposing high-level teaching goals into
discrete pedagogical steps. By grounding this process in established instructional
strategies, our approach ensures pedagogical effectiveness while keeping educators in
control of the authoring process. A preference-driven Ul refinement method further
allowed educators to guide the final interface design by selecting from multiple Al-
generated drafts, a method that our user study with K-12 educators found enhanced

both satisfaction and final interface quality compared to traditional tools.

In the domain of web applications, our contributions spanned the entire design-to-
implementation workflow. We developed a transformer-based architecture for design-
to-code translation that captures visual and structural relationships with high fidelity.
We enhanced this approach with style awareness, allowing designers to specify
aesthetics through reference images, and dynamic behavior specification through
symbolic annotations in sketches. For non-technical users, we created methods for
LLM-driven web development and GUI customization through natural language,

enabling website creation and modification without programming expertise.



151

In smart home environments, we addressed the challenge of command ambiguity
by introducing a multimodal disambiguation approach. When users issued subjective
or underspecified commands, our system generated multiple interpretations presented
as both textual descriptions and visual representations, allowing users to select the
option that best matched their intent. Our user studies confirmed that this method
enhances the naturalness of interaction and improves user control over system

actions.

As Al continues to evolve, the potential for empowering non-technical users
to create and customize technology will only grow. The principles established in
this dissertation—scaffolding complex processes, mirroring expert workflows, and
providing multiple pathways for expression—provide a foundation for realizing this
potential. They point toward a future where technology creation is limited not by
technical knowledge but is accessible to anyone with domain expertise and a creative

vision.

Through continued research and development in this area, we can work toward
a future where the ability to shape our digital world aligns more closely with the
diversity of human needs and perspectives. The ultimate goal is to narrow the gap
between having an idea and implementing it, making the tools we use true extensions

of human creativity and problem-solving capacity.
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