
Bridging Web and Figma: Automating Large-Scale UI Dataset
Generation for AI-Enhanced Design

Francesca Russo
Politecnico di Torino

Dipartimento di Automatica e
Informatica

Torino, Torino, Italy
francesca.russo@polito.it

Tommaso Calò
Politecnico Di Torino

Dipartimento di Automatica e
Informatica

Torino, Torino, Italy
tommaso.calo@polito.it

Luigi De Russis
Politecnico di Torino

Dipartimento di Automatica e
Informatica

Torino, Torino, Italy
luigi.derussis@polito.it

Abstract
Large-scale User Interface (UI) data is essential for developing Arti-
ficial Intelligence (AI)-driven tools that can support designers in
creating interfaces. However, many publicly available datasets are
either manually annotated, a time-consuming and costly process
that limits their scale or lack crucial structural information, such
as semantic labels and hierarchical relationships, necessary for ef-
fective design assistance. Moreover, no existing dataset offers a
standard format designed for seamless integration of AI models
into real-world design tools. In this work, we introduce a pipeline
that automatically converts any HTML content into structured,
Figma-compatible representations. To validate our pipeline, we ap-
ply it to WebUI, a large-scale HTML-based dataset, and conduct
a comparative evaluation by training five state-of-the-art layout
generation models on our data and the manually annotated Rico
dataset. Experimental results demonstrate that the models achieve
comparable performance across both datasets and suggest that
our pipeline can effectively produce high-quality data suitable for
training AI models integrable into design workflows.

CCS Concepts
• Human-centered computing → User interface design; •
Computing methodologies → Machine learning; • Information
systems →Web mining.

Keywords
User Interface, Layout Generation, Web, Pipeline

ACM Reference Format:
Francesca Russo, Tommaso Calò, and Luigi De Russis. 2025. Bridging Web
and Figma: Automating Large-Scale UI Dataset Generation for AI-Enhanced
Design. In Companion Proceedings of the 17th ACM SIGCHI Symposium
on Engineering Interactive Computing Systems (EICS Companion ’25), June
23–27, 2025, Trier, Germany. ACM, New York, NY, USA, 8 pages. https:
//doi.org/10.1145/3731406.3734974

This work is licensed under a Creative Commons Attribution 4.0 International License.
EICS Companion ’25, Trier, Germany
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1866-3/25/06
https://doi.org/10.1145/3731406.3734974

1 Introduction
User Interfaces (UIs) are fundamental in shaping user interaction
across web, mobile, and desktop applications. Achieving consis-
tently high-quality UI designs across these diverse platforms, how-
ever, presents a significant challenge due to the inherent complexity
involved in balancing functionality, usability, and aesthetics [5, 26].

To navigate these complexities, designers rely heavily on spe-
cialized tools that streamline workflows and facilitate collaboration.
Among these, Figma has gained considerable popularity owing
to its real-time collaborative environment and extensive plugin
ecosystem [10]. In Figma, designers can efficiently manipulate UI
components, dynamically adjusting layouts to swiftly iterate design
concepts. These capabilities position Figma as an ideal platform
for integrating Artificial Intelligence (AI)-assisted design tools into
existing professional workflows.

Recent advancements in AI [17] offer promising opportunities
for designers by automating repetitive tasks [27] and generating
intelligent, data-driven layout suggestions [16, 31]. However, cur-
rent AI-driven Figma plugins primarily leverage general-purpose
Large Language Models (LLMs) that typically lack specialized, fine-
grained knowledge of UI design principles and domain-specific
conventions, limiting their practical utility for detailed design as-
sistance [9].

Building specialized generative AI models for UI-assisted design
entails a multi-step methodology: (1) automatically gathering ex-
tensive, diverse datasets of UI designs; (2) converting these datasets
into structured formats that retain essential hierarchical and seman-
tic information necessary for practical design tasks; (3) training
specialized generative AI models tailored explicitly for UI design
tasks, optionally fine-tuned on curated, high-quality samples; and
(4) embedding these AI capabilities into Figma through dedicated
plugins, seamlessly accessible within a designer’s workflow.

Currently, these goals face substantial limitations due to exist-
ing datasets’ constraints. Widely used UI datasets such as Rico [7]
rely on supervised, manually annotated approaches, inherently
limiting their scale and generalizability. More recently, large-scale
web-based datasets such as WebUI [29], while extensive, primarily
focus on tasks such as UI element detection. Critically, they lack es-
sential structural and semantic information—including hierarchical
relationships, visual element properties, and detailed component
metadata—fundamental for both designers and AI models to effec-
tively understand and manipulate UI layouts.

This paper directly addresses these limitations through two pri-
mary contributions. First, we introduce an automated pipeline capa-
ble of converting any HTML-based user interface into a structured,

13

https://orcid.org/0009-0002-5599-6477
https://orcid.org/0000-0002-3200-2348
https://orcid.org/0000-0001-7647-6652
https://doi.org/10.1145/3731406.3734974
https://doi.org/10.1145/3731406.3734974
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3731406.3734974
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3731406.3734974&domain=pdf&date_stamp=2025-06-22

EICS Companion ’25, June 23–27, 2025, Trier, Germany Russo et al.

Figma-compatible JSON representation. We then apply it to WebUI
to explicitly capture critical structural and semantic details, such as
hierarchical relationships among UI elements and visual properties
(e.g., size, position), which are indispensable for UI designers. Addi-
tionally, the pipeline accommodates multiple viewport dimensions,
enhancing its applicability across diverse platforms.

Second, we validate the effectiveness and quality of our automat-
ically created dataset by training and evaluating five state-of-the-
art layout generative models. By quantitatively comparing layout
generation performance on our dataset with that on the manually
annotated Rico dataset, we evaluate the ability of our dataset to sup-
port models in learning detailed spatial and semantic UI structures.
Our results demonstrate that models trained on our unsupervised
dataset achieve comparable performance to those trained on cu-
rated datasets, validating the quality and practical usability of our
automatically generated, large-scale dataset. This pipeline thus sig-
nificantly reduces reliance on costly manual annotations, enabling
scalable and effective integration of AI-driven design tools within
Figma workflows.

2 Background
Recent advancements in AI and their applications to UI design have
attracted growing interest. Researchers have examined current
trends, professionals’ perceptions of AI-driven tools, and outlined
future directions for intelligent assistants [20, 24, 25]. These studies
suggest that AI has the potential to meaningfully support various
stages of the UI design workflow, particularly in areas such as
design inspiration search, exploration of alternative layouts, and
validation against established design guidelines [25].

In response, both academic and industrial research efforts have
increasingly focused on developing tools that enhance creativity
by offering layout suggestions [16] or by enabling interface genera-
tion [31].

Nevertheless, while specialized techniques tailored for UI design
have emerged, a significant portion of existing intelligent design
assistants rely on natural language description as input to prompt-
engineered general-purpose LLMs to either generate UI prototypes
[1, 2] or modify existing interfaces by operating on the individual
components [3, 4]. Although powerful and versatile, these models
are not tailored for precise and deep understanding of UI-specific
patterns, guidelines, and recommendations. As a result, their ability
to support designers in complex or highly contextualized design
tasks remains limited [28].

Conversely, when developing specialized AI models for AI-
assisted UI design, the Rico dataset [7] stands out as the most
widely adopted resource. It comprises more than 72k screens from
only Android applications, sourced from almost 10k apps, and in-
cludes annotations for component hierarchies, screenmetadata, and
element properties. Rico was mostly built with a crowdsourcing
approach involving manual data annotation, making the process
time-consuming, cost-intensive, and constrained in scale. Leiva et
al. [22] have conducted a manual verification of Rico UIs and have
identified issues such as labeling errors and inconsistencies between
UI hierarchies and their corresponding screenshots. Recent efforts
have turned to automatic UI dataset generation to reduce reliance
on manual labeling and to enable large-scale training, especially

leveraging the Web as a rich and publicly accessible source of UI
data. Webzeitgeist [21], for instance, is an automatic crawler used
to collect more than 100k web UI interfaces. A similar method is
also used for the creation of the WebUI dataset [29], which includes
400k rendered web pages and focuses on their static properties.

Despite their extensive size, these datasets lack semantic and
hierarchical structures, providing only screenshots and limited
metadata without the explicit semantic and structural infor-
mation—including hierarchical relationships and visual proper-
ties—crucial for UI designers to effectively understand and ma-
nipulate layouts.

To explicitly retrieve the semantic and spatial information (e.g.,
component hierarchies, visual elements) from HTML files, where
these information are hidden within complex and unnecessarily
nested structures, we propose a pipeline for converting any HTML
page into a JSON representation. This representation extracts the
essential spatial and semantic information needed by both design-
ers and AI design support tools, enabling more effective layout
manipulation and understanding. Additionally, to our knowledge,
no existing dataset offers a data representation directly suitable
for real-world design tools, creating a barrier to developing spe-
cialized AI-assisted design systems. Finally, unlike Rico, which
is limited to Android apps, our approach leverages HTML as a
platform-independent source that supports rendering and extract-
ing interfaces across multiple viewports.

As a result, the proposed pipeline enables the construction of
high-scale datasets for training specialized UI design assistants.
To validate the quality of our automatically generated dataset, we
adopt a generative model evaluation approach that has emerged
as a robust method for comparing data distributions in related
domains [13, 18]. By training and evaluating five state-of-the-art
layout generative models on both our dataset and the manually
annotated Rico dataset, we quantitatively assess whether our unsu-
pervised pipeline produces training data of comparable quality.

In summary, while previous works have significantly advanced
the collection and utilization of UI datasets, substantial gaps remain
in scalability, dataset annotation quality, and practical integration
into design workflows. Our work extends beyond current limita-
tions by introducing an automated pipeline capable of transforming
HTML-based interfaces into richly structured, Figma-compatible
data, thus enabling designers and researchers to leverage vast web-
based resources effectively in AI-driven UI design.

3 From HTML to Figma: Data Pipeline and
Generative Evaluation

In this section, we present our pipeline for extracting a Figma-
compatible representation from web interfaces and discuss how we
evaluate its output using state-of-the-art generative models.

3.1 Data Extraction Pipeline
Figure 1 provides an overview of our pipeline. Four sequential
stages can be identified: (i) data collection, (ii) data cleaning, (iii)
application of heuristics, and (iv) data saving.

Data collection.We deploy Puppeteer [8], a headless browser
that autonomously accesses and navigates each page, while sup-
porting flexible viewport configurations (i.e., any desired screen

14

Bridging Web and Figma: Automating Large-Scale UI Dataset Generation for AI-Enhanced Design EICS Companion ’25, June 23–27, 2025, Trier, Germany

Figure 1: Overview of our pipeline, with its four stages: (i) data collection in which a headless browser is deployed in a given
viewport and the UI is converted into a Figma-compatible JSON format, (ii) data cleaning in which non-visible elements and
irrelevant attributes are removed, (iii) application of heuristics in which we apply domain-specific rules to filter duplicate,
overlapping, or small elements to enhance dataset quality, and (iv) saving. For illustrative purposes, each stage is graphically
represented by the picture obtained by applying the JSON content of the stage on the reference web-page screenshot.

size and orientation), enabling us to capture interfaces as they
would appear across different devices or layouts. We then use the
parser of the Builder.io for Figma1 module into the page to extract a
Figma-compatible JSON representation. The module parses HTML
code and inline CSS, identifies key tags (e.g., <div>, , <p>),
and translates them into Figma-equivalent objects, such as frames,
text layers, image layers, and vector layers. In addition, the
pipeline captures a screenshot of the rendered viewport to serve as
a reference image.

Data cleaning. In the second stage, the pipeline retains only vis-
ible elements within the chosen viewport. We then remove stylistic
attributes empirically found to have minimal impact on the visual
fidelity of the UI2. Such attributes were identified through various
visual examination during the pipeline design phase.

Application of heuristics.While the first two stages constitute
a best-effort, unsupervised procedure, they do not guarantee perfect
results. Therefore, we refine the data with four domain-specific
heuristics, derived from the literature [32]:

(1) Remove duplicate elements based on Intersection over Union
(IoU) when their overlap exceeds 𝑇 = 0.9, retaining only the
largest bounding box.

(2) Merge bounding boxes sharing the same label when they
are within a distance 𝐷 = 5 pixels (based on the Euclidean
distance of their edges).

(3) Filter out elements with an area smaller than 100 pixels to
exclude minor artifacts.

(4) Discard UIs with fewer than 3 elements.
Data saving. Finally, the pipeline stores the result in structured

JSON files that Figma can natively render. These files serve as
training data for AI models, bridging raw HTML-based UIs and real-
world design tools. Figure 2 shows two random WebUI interfaces
and the corresponding output of our pipeline imported in Figma.
Finally, Appendix A reports a short example of a Figma-compatible
JSON file, extracted from the application of the pipeline.

1https://github.com/BuilderIO/figma-html, last visited on March 5, 2025
2The complete list of discarded attributes includes: imageHash, name, blendMode,
textCase, strokeWeight, radius, visible, horizontal, vertical, heightType,
widthType, position, topLeftRadius, topRightRadius, bottomRightRadius,
bottomLeftRadius, data, constraints, lineHeight, textAlignHorizontal,
opacity, backgrounds.

3.2 Generative Evaluation
To assess the suitability of the dataset produced by our pipeline,
we train five modern generative models (described in Section 3.2.1)
capable of layout synthesis and reconstruction. Unlike simpler dis-
criminative tasks (e.g., classification), generative modeling demands
a rich understanding of complex spatial structures and element re-
lationships. By observing how well these models learn to reproduce
realistic designs under established quantitative metrics, we gain
direct insight into whether the dataset effectively captures the di-
versity and complexity of real-world interfaces. In particular, we
compare performance on our dataset to those of the same models
trained on Rico [7], allowing us to evaluate whether our pipeline’s
automatically generated data achieves comparable learnability and
design fidelity.

We apply our pipeline to the HTML interfaces ofWebUI-70k [29],
setting the viewport to 390×844 pixel (i.e., iPhone 12 Pro) for con-
sistency with the mobile-focused Rico dataset [7]. We then evaluate
the resulting dataset by training five state-of-the-art layout genera-
tion models — BART [23], LayoutTransformer [12], LayoutDM [15],
MaskGIT [6], and VQ-Diffusion [11] — with publicly available im-
plementations and accessible via the official LayoutDM repository3.

3.2.1 Models Description. BART [23] is a Transformer-based
model pre-trained as a denoising autoencoder strategy. It corrupts a
sequence with a noising function and then learns to reconstruct the
original sequence, supporting both generation and comprehension
tasks.

LayoutTransformer [12] uses a Transformer backbone to learn
contextual relationships in layout elements, generating new layouts
conditioned on existing context.

LayoutDM [15] is a discrete diffusion model for layout gen-
eration, gradually refining a noisy initial layout into a coherent
structure through iterative denoising steps.

MaskGIT [6] is a non-autoregressive model that iteratively
predicts the content of masked sequences, fostering efficient and
high-quality visual content generation.

3https://github.com/CyberAgentAILab/layout-dm, last visited on March 4, 2025

15

https://github.com/BuilderIO/figma-html
https://github.com/CyberAgentAILab/layout-dm

EICS Companion ’25, June 23–27, 2025, Trier, Germany Russo et al.

Figure 2: Comparison between two randomWebUI interfaces
and the corresponding output of our pipeline imported in
Figma. Left: Original WebUI interfaces. Right: Outputs of
our pipeline imported in Figma. The output of our pipeline
preserves the original design fidelity.

VQ-Diffusion [11] combines vector quantization with diffusion
processes, discretizing data into latent variables and progressively
denoising them to generate high-quality samples.

3.2.2 Experimental Setup. For reproducibility, we detail the exper-
imental setup used for training and evaluation. We use the AdamW
optimizer with a learning rate of 5.0× 10−4, 𝛽1 = 0.9, and 𝛽2 = 0.98.
Models are trained from scratch for 75 epochs. Both datasets are
split into training, validation, and test sets using a 70%-15%-15%

split. Preprocessing includes K-Means clustering for quantization
of bounding box attributes, and a maximum layout size of 25 ele-
ments is used, with [PAD] tokens added for variable-length layouts.
The models are trained with diffusion timesteps 𝑇 = 100 and a
loss weight 𝜆 = 0.1. In models that employ a Transformer-based
backbone, we use a configuration consisting of 4 layers, 8 attention
heads, 512 embedding dimensions, 2048 hidden dimensions, and
a 0.1 dropout rate. Only labels that overlap between our dataset
and Rico are considered (i.e., TEXT, IMAGE, SVG), mapped to Text,
Image, and Icon categories in Rico. We evaluate three conditioned
layout generation tasks:

(1) Category → Size + Position: Predict the bounding box
given an element’s category.

(2) Category + Size → Position: Predict the bounding box
position given category and size.

(3) Completion: Given a partial layout, generate additional
elements to fill the design.

We use FID [14] to measure distributional similarity between gener-
ated and real layouts, and MaxIoU [19] to evaluate how accurately
predicted bounding boxes align with ground-truth. Together, these
metrics capture both global realism and local geometric correctness,
thereby gauging the effectiveness of our dataset in training layout
generation models.

4 Results
Our pipeline was applied to theWebUI-70k [29] dataset, fromwhich
we successfully extracted 43k samples. Due to robust security pro-
tocols on some websites, it was not possible to inject our web plu-
gin code, necessitating the exclusion of these samples. Interfaces
with fewer than three UI elements were omitted from our analysis,
according to the heuristics stage of the pipeline. This selection cri-
terion was essential for maintaining the integrity and relevance of
the data produced by the pipeline, ensuring that the results are both
robust and representative of well-structured interfaces. The entire
application process of our pipeline spanned approximately one day.
Notably, this process was fully automated and did not require hu-
man intervention, which significantly improved the efficiency and
scalability of our data transformation.

The quantitative results for the five layout generation models
on both our dataset and Rico, for the three selected conditioned
layout generation tasks, are reported in Table 1 in terms of FID and
MaxIoU.

While MaxIoU consistently exhibits slightly lower values on our
dataset compared to Rico, the overall similarity, as measured by
FID scores, indicates a balanced situation, with models trained on
Rico performing slightly better in some cases, and our dataset in
others. Notably, models trained on our dataset achieve the lowest
average FID score for two generation tasks out of three, namely
Category + Size → Position (i.e., 4.15 for our dataset vs. 4.24 for
Rico) and Completion (i.e., 29.59 vs. 46.35). Conversely, on average,
MaxIoU scores are generally lower across all tasks when models
are trained with our dataset, particularly in the Category + Size
→ Position task. Figure 3 shows the original layout, the condition
and the layout outputs of the five layout generation models for the
three conditioned tasks, on both our dataset and Rico.

16

Bridging Web and Figma: Automating Large-Scale UI Dataset Generation for AI-Enhanced Design EICS Companion ’25, June 23–27, 2025, Trier, Germany

Figure 3: Original layout, condition and layout outputs of the five layout generation models for the three conditioned tasks,
with pink bounding boxes for icon elements, green bounding boxes for text elements, and blue bounding boxes for image
elements. For Category → Size + Position and Category + Size → Position, the numbers near the labels under the Condition
column represent the number of elements of that category whose properties need to be predicted. Top: our dataset. Bottom:
Rico.

17

EICS Companion ’25, June 23–27, 2025, Trier, Germany Russo et al.

Table 1: Experimental FID and MaxIoU results for the five layout generation models on both our dataset and Rico, for three
conditioned layout generation tasks (Category → Size + Position, Category + Size → Position, Completion). Values in bold
represent the best scores for each metric and task across models column.

Category→ Size + Position Category + Size → Position Completion

Model Ours Rico Ours Rico Ours Rico

FID ↓ MaxIoU ↑ FID ↓ MaxIoU ↑ FID ↓ MaxIoU ↑ FID ↓ MaxIoU ↑ FID ↓ MaxIoU ↑ FID ↓ MaxIoU ↑
BART [23] 2.10 0.17 2.10 0.20 1.79 0.22 1.85 0.26 2.25 0.24 12.08 0.23
LayoutTransformer [15] 10.04 0.17 6.99 0.18 5.78 0.21 4.63 0.22 8.84 0.25 5.21 0.29
LayoutDM [15] 2.75 0.17 1.95 0.23 2.02 0.20 1.40 0.30 5.03 0.21 11.67 0.28
MaskGIT [6] 30.80 0.14 30.67 0.21 8.26 0.22 11.08 0.26 125.54 0.13 189.82 0.14
VQ-Diffusion [11] 3.43 0.17 2.61 0.20 2.92 0.20 2.26 0.24 6.29 0.21 12.96 0.23

For the Category→ Size + Position and Category + Size→ Position
tasks, the models are able to learn spatial relationships between
UI elements on both datasets. Conversely, the Completion task is
inherently more complex to solve, leading to the generation of
confusing layouts for both datasets.

While experimental results vary by model, overall performance
on our dataset is comparable to that on Rico, leading to the following
considerations:

(1) It is possible to leverage the abundance and diversity of
HTML-based data to create, without human supervision,
large and structured datasets that can be valid alternatives
to currently available datasets (e.g., Rico) for training state-
of-the-art AI models.

(2) The pipeline could also be used to transform 𝑁 HTML-based
data into 𝑁 uniformly-formatted JSON data representations.
This approach supports the creation of extensive UI datasets
with a standard structure, while preserving and leveraging
the unique features of the original datasets.

(3) The compatibility with Figma facilitates experimentation
with AI-driven applications directly usable by end-users
(e.g., UI designers), enabling the development of accessible
and practical UI design assistants.

These findings underscore the potential of this work to advance
research and development of AI-based tools that can assist in UI
design tasks.

5 Conclusions and Future Work
In this work, we presented an innovative HTML-to-Figma pipeline
that addresses the challenges of large-scale UI dataset generation
for training AI models. We have applied this pipeline to the WebUI
dataset, generating a Figma-compatible comprehensive representa-
tion from HTML-based samples. By evaluating five state-of-the-art
layout generation models on the WebUI dataset transformed using
our pipeline, we demonstrate its effectiveness in automating the ex-
traction of UI elements from HTML content into Figma-compatible
JSON files, aiming to facilitate the deployment of AI-based design
assistants in Figma.

The empirical results across three tasks reveal that models
trained on our automatically-generated dataset achieve compa-
rable performance to those trained on the manually-annotated Rico
dataset. This finding is particularly significant as it suggests the
viability of leveraging vast available HTML content for creating

training data without the need for manual annotation, minimizing
the time and costs for the creation of the dataset. Our approach
allows to avoid errors caused by human annotators and maintains
high data quality for training advanced AI models. The potential
applications of these models in engineering interactive systems and
UI design workflows include automated layout generation, style-
conditioned design variations, structural design exploration, layout
completion, and iterative layout refinement.

Despite the effectiveness and scalability of our unsupervised
pipeline, there are limitations to address in future research. First,
we rely on empirically selected filtering heuristics (e.g., bounding-
box overlap and minimum size), which might merge or discard
important components. A more adaptive approach that learns these
thresholds from data would likely yield more nuanced results. Sec-
ond, the pipeline flattens semantic classes (e.g., TextButton, Images)
to a limited set of Figma-equivalent objects. This might prevent AI
systems to learn fine-grained semantic associations. Third, we have
not conducted a direct evaluation of the accuracy of the generated
annotations as Leiva et al. did in Enrico [22], which included a
systematic assessment of dataset quality to validate the reliability
and consistency of the extracted UI elements.

Additionally, while our experiments focused on evaluating lay-
out generation, our structured representation opens the door to
other designer-related tasks such as design classification, retrieval,
and further downstream applications. For instance, the integra-
tion of a vision-language model (VLM) fine-tuned on UI data (e.g.,
FerretUI [30]) could enable automatic identification of more fine-
grained element categories, improving both dataset quality and
tasks like sketch-to-code directly within Figma. Moreover, design-
ing a domain-specific language (DSL) tailored for Figma could
streamline autoregressive generation of user interfaces in Figma’s
native format, bridging the gap between high-level design speci-
fications and production-ready layouts. We plan to explore these
avenues in future work, aiming to make our pipeline even more
robust, flexible, and widely applicable to real-world UI design sce-
narios.

Acknowledgments
We acknowledge the CINECA award under the IscrC UIML initia-
tive, for the availability of high-performance computing resources
and support.

18

Bridging Web and Figma: Automating Large-Scale UI Dataset Generation for AI-Enhanced Design EICS Companion ’25, June 23–27, 2025, Trier, Germany

References
[1] 2017. TeleportHQ: Low-code Front-end Design & Development. Retrieved

2025-03-21 from https://teleporthq.io/
[2] 2018. Uizard: App, Web and Ul Design Made Easy. Retrieved 2025-03-21 from

https://uizard.io/
[3] 2022. Visily: Al-Powered Wireframing and Design. Retrieved 2025-03-21 from

https://www.visily.ai/
[4] 2023. v0: Generative UI. Retrieved 2025-03-21 from https://v0.dev/
[5] Eren Akça and Ömer Özgür Tanriöver. 2021. A comprehensive appraisal of

perceptual visual complexity analysis methods in GUI design. Displays 69 (2021),
102031. doi:10.1016/j.displa.2021.102031

[6] Huiwen Chang, Han Zhang, Lu Jiang, Ce Liu, and William T Freeman. 2022.
Maskgit: Masked generative image transformer. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 11315–11325.

[7] Biplab Deka, Zifeng Huang, Chad Franzen, Joshua Hibschman, Daniel Afergan,
Yang Li, Jeffrey Nichols, and Ranjitha Kumar. 2017. Rico: A Mobile App Dataset
for Building Data-Driven Design Applications. In Proceedings of the 30th Annual
ACM Symposium on User Interface Software and Technology (Québec City, QC,
Canada) (UIST ’17). Association for Computing Machinery, New York, NY, USA,
845–854. doi:10.1145/3126594.3126651

[8] Chrome DevTools. 2017. Puppeteer - Chrome. Retrieved 2025-01-18 from
https://developer.chrome.com/docs/puppeteer/

[9] Peitong Duan, Chin-Yi Cheng, Gang Li, Bjoern Hartmann, and Yang Li. 2024.
UICrit: Enhancing Automated Design Evaluation with a UI Critique Dataset.
In Proceedings of the 37th Annual ACM Symposium on User Interface Software
and Technology (Pittsburgh, PA, USA) (UIST ’24). Association for Computing
Machinery, New York, NY, USA, Article 46, 17 pages. doi:10.1145/3654777.3676381

[10] Figma, Inc. 2016. Figma: the collaborative interface design tool. Retrieved
2025-01-21 from https://www.figma.com/

[11] Shuyang Gu, Dong Chen, Jianmin Bao, Fang Wen, Bo Zhang, Dongdong Chen,
Lu Yuan, and Baining Guo. 2022. Vector Quantized Diffusion Model for Text-to-
Image Synthesis. In 2022 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR). 10686–10696. doi:10.1109/CVPR52688.2022.01043

[12] Kamal Gupta, Justin Lazarow, Alessandro Achille, Larry S Davis, Vijay Mahade-
van, and Abhinav Shrivastava. 2021. Layouttransformer: Layout generation
and completion with self-attention. In Proceedings of the IEEE/CVF International
Conference on Computer Vision. 1004–1014.

[13] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and
Sepp Hochreiter. 2017. GANs trained by a two time-scale update rule converge
to a local nash equilibrium. In Proceedings of the 31st International Conference on
Neural Information Processing Systems. 6629–6640.

[14] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and
Sepp Hochreiter. 2017. GANs trained by a two time-scale update rule converge
to a local nash equilibrium. In Proceedings of the 31st International Conference on
Neural Information Processing Systems (Long Beach, California, USA) (NIPS’17).
Curran Associates Inc., Red Hook, NY, USA, 6629–6640.

[15] Naoto Inoue, Kotaro Kikuchi, Edgar Simo-Serra, MayuOtani, and Kota Yamaguchi.
2023. LayoutDM: Discrete Diffusion Model for Controllable Layout Generation.
In 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
10167–10176. doi:10.1109/CVPR52729.2023.00980

[16] Yue Jiang, Changkong Zhou, Vikas Garg, and Antti Oulasvirta. 2024. Graph4GUI:
Graph Neural Networks for Representing Graphical User Interfaces. In Proceed-
ings of the 2024 CHI Conference on Human Factors in Computing Systems (Honolulu,
HI, USA) (CHI ’24). Association for Computing Machinery, New York, NY, USA,
Article 988, 18 pages. doi:10.1145/3613904.3642822

[17] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess,
Rewon Child, Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.
Scaling Laws for Neural Language Models. arXiv:2001.08361 [cs.LG] https:
//arxiv.org/abs/2001.08361

[18] Kotaro Kikuchi, Edgar Simo-Serra, Mayu Otani, and Kota Yamaguchi. 2021. Con-
strained Graphic Layout Generation via Latent Optimization. In Proceedings of
the 29th ACM International Conference on Multimedia. 88–96.

[19] Kotaro Kikuchi, Edgar Simo-Serra, Mayu Otani, and Kota Yamaguchi. 2021. Con-
strained Graphic Layout Generation via Latent Optimization. In Proceedings
of the 29th ACM International Conference on Multimedia (Virtual Event, China)
(MM ’21). Association for Computing Machinery, New York, NY, USA, 88–96.
doi:10.1145/3474085.3475497

[20] Tiffany Knearem, Mohammed Khwaja, Yuling Gao, Frank Bentley, and Clara E
Kliman-Silver. 2023. Exploring the future of design tooling: The role of artificial
intelligence in tools for user experience professionals. In Extended Abstracts of
the 2023 CHI Conference on Human Factors in Computing Systems (Hamburg,
Germany) (CHI EA ’23). Association for Computing Machinery, New York, NY,
USA, Article 384, 6 pages. doi:10.1145/3544549.3573874

[21] Ranjitha Kumar, Arvind Satyanarayan, Cesar Torres, Maxine Lim, Salman Ahmad,
Scott R. Klemmer, and Jerry O. Talton. 2013. Webzeitgeist: design mining the
web. In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems (Paris, France) (CHI ’13). Association for Computing Machinery, New

York, NY, USA, 3083–3092. doi:10.1145/2470654.2466420
[22] Luis A. Leiva, Asutosh Hota, and Antti Oulasvirta. 2021. Enrico: A Dataset for

Topic Modeling of Mobile UI Designs. In 22nd International Conference on Human-
Computer Interaction with Mobile Devices and Services (Oldenburg, Germany)
(MobileHCI ’20). Association for Computing Machinery, New York, NY, USA,
Article 9, 4 pages. doi:10.1145/3406324.3410710

[23] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman
Mohamed, Omer Levy, Veselin Stoyanov, and Luke Zettlemoyer. 2020. BART:
Denoising Sequence-to-Sequence Pre-training for Natural Language Generation,
Translation, and Comprehension. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, Dan Jurafsky, Joyce Chai, Natalie
Schluter, and Joel Tetreault (Eds.). Association for Computational Linguistics,
Online, 7871–7880. doi:10.18653/v1/2020.acl-main.703

[24] Jie Li, Hancheng Cao, Laura Lin, Youyang Hou, Ruihao Zhu, and Abdallah El Ali.
2024. User Experience Design Professionals’ Perceptions of Generative Artificial
Intelligence. In Proceedings of the 2024 CHI Conference on Human Factors in
Computing Systems (Honolulu, HI, USA) (CHI ’24). Association for Computing
Machinery, New York, NY, USA, Article 381, 18 pages. doi:10.1145/3613904.
3642114

[25] Yuwen Lu, Chengzhi Zhang, Iris Zhang, and Toby Jia-Jun Li. 2022. Bridging the
Gap Between UX Practitioners’ Work Practices and AI-Enabled Design Support
Tools. In Extended Abstracts of the 2022 CHI Conference on Human Factors in Com-
puting Systems (New Orleans, LA, USA) (CHI EA ’22). Association for Computing
Machinery, New York, NY, USA, Article 268, 7 pages. doi:10.1145/3491101.3519809

[26] Aliaksei Miniukovich, Simone Sulpizio, and Antonella De Angeli. 2018. Visual
complexity of graphical user interfaces. In Proceedings of the 2018 International
Conference on Advanced Visual Interfaces (Castiglione della Pescaia, Grosseto,
Italy) (AVI ’18). Association for Computing Machinery, New York, NY, USA,
Article 20, 9 pages. doi:10.1145/3206505.3206549

[27] Vinoth Pandian Sermuga Pandian, Sarah Suleri, Christian Beecks, and Matthias
Jarke. 2021. MetaMorph: AI Assistance to Transform Lo-Fi Sketches to Higher
Fidelities. In Proceedings of the 32nd Australian Conference on Human-Computer
Interaction (Sydney, NSW, Australia) (OzCHI ’20). Association for Computing
Machinery, New York, NY, USA, 403–412. doi:10.1145/3441000.3441030

[28] Chenglei Si, Yanzhe Zhang, Ryan Li, Zhengyuan Yang, Ruibo Liu, and Diyi Yang.
2025. Design2Code: Benchmarking Multimodal Code Generation for Automated
Front-End Engineering. arXiv:2403.03163 [cs.CL] https://arxiv.org/abs/2403.
03163

[29] Jason Wu, Siyan Wang, Siman Shen, Yi-Hao Peng, Jeffrey Nichols, and Jeffrey P
Bigham. 2023. WebUI: A Dataset for Enhancing Visual UI Understanding with
Web Semantics. In Proceedings of the 2023 CHI Conference on Human Factors in
Computing Systems (Hamburg, Germany) (CHI ’23). Association for Computing
Machinery, New York, NY, USA, Article 286, 14 pages. doi:10.1145/3544548.
3581158

[30] Keen You, Haotian Zhang, Eldon Schoop, Floris Weers, Amanda Swearngin,
Jeffrey Nichols, Yinfei Yang, and Zhe Gan. 2024. Ferret-UI: Grounded Mobile UI
Understanding with Multimodal LLMs. In Computer Vision – ECCV 2024: 18th
European Conference, Milan, Italy, September 29–October 4, 2024, Proceedings, Part
LXIV (Milan, Italy). Springer-Verlag, Berlin, Heidelberg, 240–255. doi:10.1007/978-
3-031-73039-9_14

[31] Ning Yu, Chia-Chih Chen, ZeyuanChen, RuiMeng, GangWu, Paul Josel, Juan Car-
los Niebles, Caiming Xiong, and Ran Xu. 2025. LayoutDETR: Detection Trans-
former Is a Good Multimodal Layout Designer. In Computer Vision – ECCV 2024,
Aleš Leonardis, Elisa Ricci, Stefan Roth, Olga Russakovsky, Torsten Sattler, and
Gül Varol (Eds.). Springer Nature Switzerland, Cham, 169–187.

[32] Xiaoyi Zhang, Lilian de Greef, Amanda Swearngin, Samuel White, Kyle Murray,
Lisa Yu, Qi Shan, Jeffrey Nichols, Jason Wu, Chris Fleizach, Aaron Everitt, and
Jeffrey P Bigham. 2021. Screen Recognition: Creating Accessibility Metadata for
Mobile Applications from Pixels. In Proceedings of the 2021 CHI Conference on
Human Factors in Computing Systems (Yokohama, Japan) (CHI ’21). Association
for Computing Machinery, New York, NY, USA, Article 275, 15 pages. doi:10.
1145/3411764.3445186

A Extract of a Figma-compatible JSON file

1 {
2 "layers": [
3 {
4 "type": "FRAME",
5 "width": 390,
6 "height": 844,
7 "x": 0,
8 "y": 0,
9 "children": [
10 {
11 "type": "FRAME",
12 "clipsContent": false,
13 "x": 0,
14 "y": 0,
15 "width": 390,

19

https://teleporthq.io/
https://uizard.io/
https://www.visily.ai/
https://v0.dev/
https://doi.org/10.1016/j.displa.2021.102031
https://doi.org/10.1145/3126594.3126651
https://developer.chrome.com/docs/puppeteer/
https://doi.org/10.1145/3654777.3676381
https://www.figma.com/
https://doi.org/10.1109/CVPR52688.2022.01043
https://doi.org/10.1109/CVPR52729.2023.00980
https://doi.org/10.1145/3613904.3642822
https://arxiv.org/abs/2001.08361
https://arxiv.org/abs/2001.08361
https://arxiv.org/abs/2001.08361
https://doi.org/10.1145/3474085.3475497
https://doi.org/10.1145/3544549.3573874
https://doi.org/10.1145/2470654.2466420
https://doi.org/10.1145/3406324.3410710
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.1145/3613904.3642114
https://doi.org/10.1145/3613904.3642114
https://doi.org/10.1145/3491101.3519809
https://doi.org/10.1145/3206505.3206549
https://doi.org/10.1145/3441000.3441030
https://arxiv.org/abs/2403.03163
https://arxiv.org/abs/2403.03163
https://arxiv.org/abs/2403.03163
https://doi.org/10.1145/3544548.3581158
https://doi.org/10.1145/3544548.3581158
https://doi.org/10.1007/978-3-031-73039-9_14
https://doi.org/10.1007/978-3-031-73039-9_14
https://doi.org/10.1145/3411764.3445186
https://doi.org/10.1145/3411764.3445186

EICS Companion ’25, June 23–27, 2025, Trier, Germany Russo et al.

16 "height": 734,
17 "children": [
18 {
19 "type": "FRAME",
20 "clipsContent": false,
21 "x": 0,
22 "y": 0,
23 "width": 390,
24 "height": 70,
25 "children": [
26 {
27 "type": "SVG",
28 "x": 20,
29 "y": 13,
30 "width": 60,
31 "height": 60,
32 "svg": "<?xml version =\"1.0\" encoding =\"UTF -8\"? >\n<svg width

=\"192 px\" height =\"191 px\" viewBox =\"0 0 192 191\"
version =\"1.1\" xmlns =\" http://www.w3.org /2000/ svg\"
xmlns:xlink =\" http://www.w3.org /1999/ xlink\">\n <!--
Generator: Sketch 52.6 (67491) - http://www.
bohemiancoding.com/sketch -->\n <title >logo </title >\n
<desc >Created with Sketch.</desc >\n <g id=\" logo\"

stroke =\" none\" stroke -width =\"1\" fill =\" none\" fill -
rule =\" evenodd \">\n <path d=\"M84.5,189.6 C97.5,
186.5 114.9,177.3 138.5,161.2 C153.2,151.1 157.1,148
166.3,139.1 C183.1,122.9 190.4,107.1 191.7,84 C193,60.1
184.7,39.1 168.9,26.3 C148.8,10 108.3, -0.5 66, -0.4 C50

.3, -0.4 46.1, -0.1 38.6,1.8 C13,8.2 2.1,22.1 0.3,50.5 C
-1.6,81.7 13.3,134.3 32.1,163 C34.5,166.6 39.6,172.7
43.4,176.6 C56.3,189.5 68.4,193.3 84.5,189.6 Z\" id=\"
Path\" fill =\"#000000\" fill -rule =\" nonzero \"/>\n <
path d=\"M62,109 L62,88 L55,88 L48,88 L48,81.5 L48,75
L55,75 L62,75 L62,71.3 C62,58.3 71.6,49 85,49 C92.5,49
93.3,49.7 92.5,55.2 C91.6,61.3 91.2,61.6 85.5,62.3 C79
.5,62.9 77,65.5 77,71.1 L77,75 L87.5,75 L98,75 L98,69.7
C98,62.2 101.3,56.4 107.5,52.5 C111.8,49.8 113.2,49.5

120.1,49.5 C124.3,49.5 128,49.7 128.3,50 C128.6,50.3
128.4,53.1 127.8,56.3 L126.8,62 L122.5,62 C116.6,62
113.1,65 112.3,70.8 L111.7,75 L120.4,75 L129,75 L129,
81.5 L129,88 L120.5,88 L112,88 L112,109 L112,130 L105,
130 L98,130 L98,109 L98,88 L87.5,88 L77,88 L76.8,108.8
L76.5,129.5 L69.3,129.8 L62,130.1 L62,109 Z\" id=\" Path
\" fill =\"# FFFFFF \"/>\n </g>\n</svg >"

33 },
34 {
35 "x": 323,
36 "y": 36,
37 "width": 47,
38 "height": 18,
39 "type": "TEXT",
40 "characters": "Menu",
41 "fills": [
42 {
43 "type": "SOLID",
44 "color": {
45 "r": 0.2,
46 "g": 0.2,
47 "b": 0.2
48 }
49 }
50],
51 "fontSize": 18,
52 "fontFamily": "BasierSquare"
53 }
54]
55 },
56 ...
57]
58 }
59]
60 }
61]
62 }

20

	Abstract
	1 Introduction
	2 Background
	3 From HTML to Figma: Data Pipeline and Generative Evaluation
	3.1 Data Extraction Pipeline
	3.2 Generative Evaluation

	4 Results
	5 Conclusions and Future Work
	Acknowledgments
	References
	A Extract of a Figma-compatible JSON file

