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Abstract. Researchers have made notable progress in applying large
language models (LLMs) to solve math problems, as demonstrated
through efforts like GSMS8k, ProofNet, AlphaGeometry, and Math-
Odyssey. This progress has sparked interest in their potential use for
tutoring students in mathematics. However, the reliability of LLMs
in tutoring contexts—where correctness and instructional quality are
crucial—remains underexplored. Moreover, LLM problem-solving capa-
bilities may not necessarily translate into effective tutoring support for
students. In this work, we present two novel approaches to evaluate the
correctness and quality of LLMs in math tutoring contexts. The first
approach uses an intelligent tutoring system for college algebra as a
testbed to assess LLM problem-solving capabilities. We generate bench-
mark problems using the tutor, prompt multiple LLMs to solve them,
and compare the solutions to those generated by the tutor. The sec-
ond approach evaluates LLM as tutors rather than problem solvers. We
employ human evaluators, who act as students seeking tutoring support
from each LLM. We then assess the quality and correctness of the sup-
port provided by the LLMs via a qualitative coding process. We applied
these methods to evaluate several ChatGPT models, including 3.5 Turbo,
4, 40, ol-mini, and ol-preview. Our findings show that when used as
problem solvers, LLMs generate correct final answers for 85.5% of the
college algebra problems tested. When employed interactively as tutors,
90% of LLM dialogues show high-quality instructional support; however,
many contain errors—only 56.6% are entirely correct. We conclude that,
despite their potential, LLMs are not yet suitable as intelligent tutors
for math without human oversight or additional mechanisms to ensure
correctness and quality.
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1 Introduction

Large language models (LLMs) have started to exhibit moderate proficiency at
mathematical problem solving. For example, GPT-4 correctly solves over 90%
of the problems in the GSM8K benchmark [5] and approximately 80% of the
problems in the MATH benchmark [7] using advanced prompting techniques
[22]. Although these results indicate progress, there are still many limitations.
Findings from the GSM-Symbolic benchmark [20] suggest that LLMs struggle
with perturbed or novel problem formulations that are easily solved by humans,
indicating that their relatively high performance on standard benchmarks is
partially due to memorization. Furthermore, LLM performance remains inconsis-
tent across different problem classes, in contrast to traditional intelligent tutors,
which provide 100% accurate support. These inconsistencies warrant a deeper
investigation into the capabilities, limitations, and implications of LLMs for edu-
cation.

Companies such as Duolingo and Khan Academy have started to leverage
LLMs to offer personalized learning experiences, facilitate interactive problem-
solving, and provide real-time feedback to learners. However, significant chal-
lenges remain to ensure the accuracy, reliability, and adaptability of LLMs in
tutoring settings. Despite their remarkable capabilities, studies have shown that
LLMs frequently produce plausible yet incorrect solutions to complex mathemat-
ical problems, especially in areas that require precise calculations and multi-step
reasoning [11,20]. In mathematics, not only is the correctness of the final answer
crucial, but also the quality of stepwise guidance that fosters effective learning.
One recent classroom study comparing LLM-tutoring to traditional classroom
instruction showed positive results [13], but another showed a negative result [4].
Considering that LLMs likely produce errors in around 10% of responses—using
the best GSM8k performance as an optimistic measure—there is a possibility
that they may do more harm than good. The manner in which LLMs confi-
dently “hallucinate” incorrect yet seemly plausible information is a recipe for
several possible negative effects [12]. In the best case, students’ trust in LLM
tutors may be eroded upon recognizing mistakes. At worst, LLM hallucinations
may lead students to form misconceptions that compromise future learning.

LLM tutors mark an unusual inflection in the history of intelligent tutor-
ing systems. It has been known for decades that automated computer-delivered
tutors produce learning gains comparable to or greater than those of human
tutors [17,26], who famously provide learning gains up to two standard devi-
ations higher than those from traditional classroom instruction [2]. The origi-
nal artificial intelligence (AI) tutors—hard-coded intelligent tutoring systems—
found success through a cognitivist approach to tutoring: tracking and quanti-
fying student knowledge by comparison to an expert model [6], and adapting
instruction accordingly [21,25]. As compelling as LLMs’ generative capabilities
are, when used as standalone tutors, they arguably mark a regression in actual
AT tutoring capabilities compared to traditional ITSs since they are consistently
inaccurate and lack the cognition-oriented adaptivity of prior approaches.



Evaluating Large Language Models for Math Tutoring 325

This study evaluates the potential of LLMs in educational contexts by sys-
tematically assessing their performance on structured algebra tasks. We selected
algebra for this study, given its long-standing use in previous research on ITSs
[1,9,16]. This study aims to investigate the following research questions:

— RQ1: How accurately can LLMs generate solutions to the kinds of algebra
problems currently supported by intelligent tutoring systems?

— RQ2: What is the accuracy and quality of the tutoring support provided by
LLMs (e.g., scaffolding, hints, and feedback) on these algebra problems?

We employ two techniques to explore these questions: (1) an automated app-
roach that uses an existing algebra tutor as a testbed for evaluating LLM problem
solving and (2) a qualitative approach to assess the quality and correctness of
LLM dialogues generated by having evaluators interactively prompt an LLM for
tutor support. For the second method, we also conducted a thematic analysis [3]
to identify and categorize observations about LLM tutoring behaviors.

The findings of this study contribute to research on ITS by providing empiri-
cal evidence on the strengths and limitations of LLMs in math tutoring contexts,
thus enriching the ongoing discourse on the role of Al in supporting learning.
Specifically, our study makes the following contributions:

— We introduce a novel method that uses intelligent tutors as testbeds for eval-
uating LLM problem solving.

— We introduce a second method for interactively evaluating LLM tutoring
correctness and quality.

—  We show that while LLMs largely generate responses aligned with pedagogical
best practices, they frequently contain mistakes and inaccuracies, suggesting
they are not yet ready for direct in-class deployment.

— We offer actionable guidelines for developers, emphasizing how LLMs can
support aspects of tutoring, such as question generation and hint production,
rather than serving as comprehensive, standalone tutoring solutions.

2 Related Works

Researchers have begun exploring the use of LLMs in educational applications.
The existing literature shows that LLMs can generate worked examples and
guide structured problem solving. For example, WorkedGen [28] uses prompt
chaining and one-shot learning to produce interactive programming examples.
Although user studies indicate that 77% of students found WorkedGen help-
ful, such self-reported feedback does not necessarily confirm improved learning
outcomes. Similarly, Jamplate [15] harnesses Al-powered templates for idea gen-
eration, providing reflection-based scaffolding, but noting a tendency toward
reduced critical thinking among students.

Although these studies highlight the potential of LLMs to create structured
examples and facilitate reflective engagement, researchers must develop a consis-
tent, stepwise evaluation framework for algebraic or multi-step reasoning tasks.



326 A. Gupta et al.

Existing benchmarks, such as GSM8K [5], evaluate only the final answer’s accu-
racy, overlooking the intermediate steps and iterative feedback typical of most
tutoring experiences [10]. As a result, there is still a need for a more systematic
methodology that tests how effectively LLMs handle multi-step problems and
adapt to the pedagogical requirements of a tutoring environment.

Another expanding line of work examines how LLMs function as tutors, focus-
ing on the trade-off between personalized support and instructional accuracy for
non-fluent English speakers. For example, a comparative study of models such
as GPT-4, Llama-2-ko-DPO-13B, and eT5-chat reveals trade-offs between indi-
vidualization and correctness [23]. Smaller models provided more personalized
interactions, while GPT-4 exhibited greater correctness but less personalized
assistance. Tutoring is an immensely personal activity, and both correctness
and individualization are needed. These studies demonstrate the need for more
investigation into LLMs’ shortcomings in stepwise instruction and how to better
integrate them into existing intelligent tutoring platforms. Current studies often
prioritize correctness of the final answer, overlooking the quality of intermediate
steps that are crucial for meaningful learning [27]. For example, in mathematics
education, breaking problems down into their steps ensures that students grasp
foundational concepts rather than simply arriving at the correct solution.
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Fig.1. Our proposed intelligent tutor-based LLM evaluation process. The process
begins with the testbed setup - hosted on Google Colab (A), followed by generat-
ing problems and solutions using the intelligent tutor (Apprentice Tutors, in our case)
(B). For our evaluation, 22 types of problems are then submitted to LLM models such
as GPT-3.5 Turbo and GPT-4 (C). Responses from each LLM are checked by sub-
mitting them along with the tutor answers to a second LLM (D). We then performed
manual human verification to validate the accuracy of the second model’s responses.
Finally, all results are logged into a performance tracker spreadsheet (F).
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The work in this paper aims to fill this gap by introducing a novel method
that evaluates LLM performance on a wide range of math questions from college
algebra, generated from the Apprentice Tutors platform [8]. This platform was
designed as a web-based intelligent tutoring platform to support personalized
learning in mathematics. The platform supports more than ten tutors covering
topics like radicals, factoring polynomials, and solving logarithmic equations.

3 Methodology

We employ two complementary approaches to evaluate LLMs. First, we devel-
oped an automated approach that uses an existing intelligent tutoring system to
assess LLM problem-solving accuracy. We generate problems from the tutor and
submit them to multiple LLMs. We then use the tutor expert model to generate
correct answers, which were then compared to the LLM answers using a sec-
ond LLM (to account for minor variations in the math formatting). Second, to
evaluate LLMs as tutors, we had evaluators interactively engage with the LLMs
to request tutoring guidance as if they were students. We then qualitatively
evaluated the tutor support generated by the LLMs.

We collected and analyzed data from both approaches to analyze the
strengths and limitations of LLMs in structured problem-solving tasks. Figures 1
and 2 illustrate the workflows for these methodologies, which we describe below.

3.1 Evaluating LLM Using Intelligent Tutors as Testbeds

We developed our evaluation system in Python to automate tutor problem gen-
eration, LLM interaction, and response evaluation. This allowed us to system-
atically test multiple LLMs on a variety of educational tasks. For this study, we
evaluated GPT-3.5 Turbo, GPT-4, GPT-40, ol Mini, and ol Preview'. Although
these models were the focus of this analysis, the benchmarking tool is designed
to be extensible to other tutor content and can be easily adapted to test other
models, such as Google’s Gemini, Anthropic’s Claude series, or Deepseek’s open
models.

The workflow for the tutor-based evaluation process is outlined in Fig. 1.
The process begins with the testbed setup (A), where we define parameters
for the evaluation, including the number and type of algebra problems to be
tested. For this study, we identified 22 problem types from the Apprentice Tutors
platform and generated five problems of each type. The problems and their
corresponding step-by-step solutions were generated directly from the Apprentice
Tutors software (B). The generated problems were then submitted to each LLM
(C), which was prompted to produce a solution. The exact prompt provided to
each LLM was:

! Model  snapshots evaluated: gpt-3.5-turbo-0125, gpt-4-0125-preview,
gpt-40-2024-05-13, 01-mini-2024-09-12, and ol-preview-2024-09-12.
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Math Problem Solving Prompt

You will be solving the math questions that are provided as strings. Your task
is to parse each question, solve it step-by-step, and provide the final answer in
LaTeX format.

Here are the math questions and their answers for verification:
<question_answer_ text>

Now, here are some new math questions that need answers:
<next question text>

For each question, think through the <problem type> problem step-by-step
in (scratchpad) tags. Break down the problem into smaller sub-problems if
necessary, and solve each one in a logical order. Show your work and reasoning
at each step.

After you have thought through each problem and arrived at a final answer,
confirm that it matches the provided answer in LaTeX format inside the cor-
responding (answer) tag.

The benchmarking system processed the responses from the initial LLM
prompt and extracted the outputs, generating a structured list of questions
paired with their corresponding answers produced by the LLM. The LLM
responses were then evaluated by submitting the correct solution (from the
tutor) and the generated LLM solution to a second LLM (D) to verify accu-
racy and logical consistency. We used GPT-4 as the evaluation model in all
tests. Each LLM was evaluated sequentially and the results were recorded and
analyzed before proceeding to the next model. The exact prompt used by the
second LLM to evaluate each answer was:

LLM Evaluation Prompt

Just say True or False (nothing else): does <LLM _generated response> equal
the same as <ground _truth _response from tutor>?

To further validate the quality of the LLM evaluation, we performed manual
human verification (E). During this process, reviewers compared the ground-
truth responses generated by the Apprentice Tutors platform with the responses
produced by the LLM and the correctness assessments provided by the second
LLM. In certain cases, discrepancies arose due to differences in interpretation,
such as when the second LLM marked an expression like V4 as incorrect because
it expected the simplified answer of 2. These instances were noted and the human
reviewer marked the answer as correct if it was mathematically accurate in its
final form. However, stepwise solutions were also considered, ensuring that inter-
mediate simplifications (e.g., distinguishing between /4 and 2 when necessary)
aligned with expected problem-solving conventions.

Finally, all data collected, including LLM responses, human evaluations, and
any discrepancies identified during the validation process, were systematically
recorded in a performance tracker spreadsheet (F). This structured logging app-
roach facilitated detailed analysis and allowed for a robust comparison between
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different LLM models and problem types. The goal was to gain insights into
their performance and limitations.

Using ChatGPT for
Tutoring Guidance

Fig. 2. Our process for evaluating an LLM via interactive prompting. This diagram
illustrates the process using ChatGPT’s chat interface. The workflow begins by having
evaluators prompt ChatGPT to provide tutor guidance on tutor problems as if they
were students (A). Evaluators interactively submit queries and receive step-by-step
guidance from ChatGPT (B). The evaluators systematically log each chat dialogue in
a spreadsheet tracker for analysis (C).

3.2 Evaluating LLMs via Interactive Prompting

We conducted a second study to assess how the LLMs perform when interact-
ing with learners as tutors (see Fig.2). This study was designed to provide a
qualitative perspective on the educational capabilities of the models, in contrast
to the previous automated evaluation of their problem-solving capabilities. We
performed manual evaluation of the LLMs using a standardized variation of the
prompt from Salman Khan’s widely cited ChatGPT interview [14] to ensure con-
sistency between sessions. By comparing these human-guided interactions with
the outputs of the intelligent tutor, we investigated how well the step-by-step
guidance of LLMs align with real user queries and misconceptions in a math
tutoring context. Here is the prompt that was used:

Interactive Tutoring Prompt

I’d love you to tutor me on this following math problem, but don’t give me the
answer. You can ask questions and nudge me in the right direction. I want to
make sure I understand it. Here is the problem below. <Problem>
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The problems were taken directly from the Apprentice Tutors and entered
into ChatGPT. Three evaluators interacted with the model as it guided them
through problem-solving, responding to ChatGPT’s hints and prompts as they
progressed. After each session, they logged a link to the chat history, the final
answers provided by ChatGPT, and whether the responses matched the correct
answers generated by the Apprentice Tutors. An example of this recording is
shown in part B of Fig. 2.

After collecting all responses, two independent reviewers assessed the inter-
actions to answer the following questions about each tutoring dialogue:

— Quality: Do the steps represent a high-quality tutoring interaction?
— Correctness: Were all the LLM responses in the dialogue correct?

To answer the first question and classify response quality, each dialogue was
evaluated with respect to a structured rubric that scored clarity of explanation,
feedback, scaffold support, problem-solving strategy, and encouragement and
reinforcement.? Each criterion was scored on a scale from 1 to 4. The rubric
was designed to measure several key aspects of tutoring quality. This structured
approach aimed to reflect established learning science principles. We summed
the scores across all criteria. If the total score was 10 or below, the response
was categorized as “No” (not good quality); if the score was above 10, it was
categorized as “Yes” (good quality). Once the scores were converted into Yes/No
labels, we measured inter-rater reliability using Cohen’s Kappa [19] to assess
agreement between reviewers and confirm the robustness of our classifications.

To answer the second question and assess response correctness, each
reviewer also independently assessed whether all the LLM-generated content
was correct. These evaluations consisted of considering each LLM response from
the dialogue, and noting any mistakes or errors. If there were any errors, then
the dialogue was coded as incorrect, otherwise it was recorded as correct. Simi-
lar to question 1, we measured inter-rater reliability of the two evaluations using
Cohen’s Kappa. We also conducted a thematic analysis [3] of the LLM responses
to identify recurring patterns in tutoring interactions. The goal was to identify
and categorize common patterns, counting their frequency and noting whether
they corresponded to positive or negative tutoring behaviors.

4 Results and Analysis

We present the results of the two evaluation methods used to assess the perfor-
mance of LLMs in math tutoring contexts. We first present the results from our
tutor-based evaluation method and then the results from evaluators interactively
prompting the LLMs as if they were students.

2 The rubric is available here: https://osf.io/kdwqc.
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4.1 Tutor-Based LLM Evaluation Results

Table 1 summarizes the results from the tutor-based evaluation. The apprentice
tutors had 22 problem types and we sampled 5 problems of each type to produce
a test set that contained 110 problem and answer pairs.

Table 1. The tutor-based LLM evaluation results, which only assessed the final answer.

Model # Problem Types|# Problems|# Correct/Accuracy
GPT-3.5 Turbo|22 110 85 77.3%
GPT-4 22 110 83 74.5%
GPT-40 22 110 107 97.3%
ol-mini 22 110 101 91.8%
ol-preview 22 110 94 85.5%
Overall Avg. (22 110 94 85.5%

Table 2. Assessments of LLM tutoring interaction quality and accuracy across 30
problems. The columns show final answer accuracy as well as the percentage of LLM
dialogues that were classified as high quality and fully correct, as indicated by reviewers
R1 and R2. The number of problems in each case is noted in parentheses.

Model Final Accuracy|% High Quality % Fully Correct
R1 R2 R1 R2

GPT 3.5 Turbo|90.0% (27) 90.0% (27)/90.0% (27)/46.7% (14)/53.3% (16)
GPT 4 83.3% (25) 93.3% (28)193.3% (28)143.3% (13)/50.0% (15)
GPT 4o 93.3% (28) 90.0% (27)/90.0% (27)/70.0% (21)/80.0% (24)
ol mini 86.7% (26)  86.7% (26)80.0% (24)56.7% (17)43.3% (13)
ol preview 90.0% (27) 90.0% (27)/96.7% (29)73.3% (22)/50.0% (15)
Overall Avg. |88.6% 90.0% 56.6%

We identified twenty-five instances (6.3% of total responses) where the second
LLM marked answers incorrectly. From our observations, the second LLM would
incorrectly mark the answer when comparing the tutor-generated response to
the LLM-generated response for the following reasons: (1) a mismatch in the
operational order (e.g., (34+6) x 2 vs. 3+ (6 x2)), (2) differences in simplification

(e.g., % vs. 0.5), and (3) differences in operator context (e.g., multiplication

represented by “x” vs. “¥7).
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4.2 Interactive Prompting-Based LLM Evaluation

The evaluators prompted each of the five models to provide tutoring support
on the same set of 30 problems, resulting in a total of 150 LLM dialogues. The
two reviewers independently analyzed each dialogue to classify whether it was
high quality (according to the rubric) and fully correct. We also evaluated the
final answer accuracy from each dialogue by comparing it to the tutor solution.
Table 2 shows the results of these assessments, breaking out the accuracy of final
LLM answers alongside reviewer assessments of the quality and correctness of
the LLM dialogues. We calculated Cohen’s Kappa (k) to evaluate the reviewer
agreement for both the quality and correctness ratings. This score, which ranges
from 0 to 1, represents agreement after correcting for chance. A score greater
than 0.7 is typically viewed as strong agreement. For the quality ratings, Cohen’s
KQuality ~ 0.85, and for the assessment of whether the LLM dialogues were
entirely correct, Cohen’s Koorrectness = 0.82. These scores indicate very strong
agreement between the independent reviewers.

Finally, the reviewers evaluated each model’s performance, documenting key
behavioral patterns and noting any common issues. Table 3 summarizes these
findings, classifying observations as positive or negative based on their potential
impact on learners. This analysis highlights the strengths and weaknesses of each
model’s tutoring approach, offering insight into their effectiveness in guiding
students through problem-solving.

5 Discussion

Both of our evaluation methods suggest that the LLMs show reasonable final
answer accuracy. Our tutor-based evaluation showed that GPT-40 had the high-
est final-answer accuracy at 97.3%. In the interactive prompting-based evalua-
tion, we found that GPT-40 also got the highest accuracy at 93.3%. Although
these accuracies seem reasonable, it still means that these models will generate
incorrect final answers for about 1 in 18 problems. Surprisingly, GPT-4 ranked
last, and the model ranking changed based on the evaluation.

Newer models (ol-mini) often performed worse than older ones (GPT-40),
despite expected improvements. This suggests that LLM performance can no
longer be expected to improve with each new model release. Also, there are
still gaps in how LLMs process multi-step math questions, even with chain-of-
though models. In terms of final answer accuracy, we observed that the interac-
tive prompt-based evaluation results were higher than those from the tutor-based
evaluation, probably because human testers engaged in multi-turn interactions,
allowing LLMs to refine responses. In contrast, the tutor-based evaluation pro-
vided only a single prompt, requiring the model to solve problems correctly in
one step.

During our interactive prompting-based evaluation, we found that LLMs gen-
erate high-quality tutoring support most of the time. Although GPT-4 had the
lowest final answer accuracy, it scored near the top in terms of quality, with
93.3% of its chat dialogues being classified as having high pedagogical quality.
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Table 3. Summary of key observations from the interactive tutoring evaluation.

Observation Occurrences/Sentiment

The final answer was correct, even though there were 6 Negative
Inconsistencies in the sub-steps

Even though the prompt was not to share an answer, it 4 Negative
was possible to obtain the answer by manipulating
responses (via yes/no questions)

For topics like factoring, there was an overemphasis on 4 Negative
teaching basics (e.g., multiplying) instead of demonstrating
specific methods (e.g., “slip and slide”)

LLM over-indexes on ensuring the final answer is correct |3 Negative
rather than emphasizing the student’s step-by-step skill

acquisition

LLM occasionally produces an incorrect conclusion and 4 Negative
refuses to accept a correct student answer

Sub-steps are sometimes flagged as incorrect even though |3 Negative
they are actually correct

Difficult math notation (e.g., quadratic expressions) can be|2 Negative
challenging to input from a standard keyboard

LLM is flexible about answer formats, accepting multiple |3 Positive
notational styles

LLM excels at generating hints and extra worked examples|2 Positive
to support instruction

LLM provides encouraging feedback and positive 7 Positive
reinforcement, which could benefit student well-being

LLM nudges students to answer queries in sequence when |2 Positive

they attempt to skip ahead

Although the LLMs achieved reasonable final answer accuracies, we found that
their full tutor dialogues often contained mistakes. Along this dimension, GPT-
40 achieved the best performance, with 75% of its dialogues being classified as
fully correct (averaging across the two reviewers). Across all five of the LLMs,
only 56.6% of the tutor dialogues were entirely correct. This suggests that in
almost half of interactive LLM tutoring sessions, students will receive partially
incorrect instruction. These results suggest that LLM error rates at tutoring
tasks are likely much higher than final answer-based benchmarks suggest. This
raises concerns about their use as standalone tutors, as less-than-perfect accu-
racy can harm learners. If one in two dialogues contains errors, students may lose
trust in the tutor and, worse, develop misconceptions that hinder future learning.
Our results also suggest that future evaluations must consider the correctness of
the entire tutoring dialogue, not just the final answer accuracy.

Traditional intelligent tutoring systems employ explicit scaffolding, guiding
students through sequenced substeps that stem from research-based design meth-
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ods such as cognitive task analysis [18]. In contrast, large language models often
provide a complete solution or a fixed step-by-step explanation, offering lim-
ited adaptive support for the intermediate reasoning of learners. For example,
in factoring problems, LLMs often provide overly general guidance, e.g. generic
multiplication rules, instead of the specific “slip and slide” strategy explicitly
requested in the task. Although such responses may earn full credit in automated
evaluations, omitting the specified method diminishes the tutoring quality.

Table 3 summarizes reviewer observations of tutoring interactions. Reviewers
noted that the LLMs sometimes refused to accept correct answers, miscalcu-
lated sub-steps, or overemphasized fundamentals at the expense of specialized
techniques. However, the LLMs also provided flexible response formats, detailed
hints, and encouraging feedback. Manual review of chat logs revealed inconsis-
tencies in how LLMs handled intermediate steps. While they often produced
correct final answers, sub-steps were occasionally miscalculated or erroneously
flagged as incorrect (8 instances, as shown in Table 3). These errors fell into three
categories: (1) simplified vs. unsimplified answers (e.g., 2 vs. v/4), (2) differences
in term order (e.g., V3 4+ V4 vs. VA + \/3), and (3) formatting mismatches
(e.g., missing required LaTeX tags). These issues highlight inconsistencies in
how LLMs evaluate semantic equivalence.

Although LLMs may be incorrect and pedagogically misaligned compared to
ITS when tutoring, recent work demonstrates how LLMs could support ITS in
hint generation [24]. By leveraging the expert model of ITS, LLMs can gener-
ate correctness feedback personalized to student responses without needing the
LLM to perform any mathematical calculations [24]. If integrated with other
educational technologies, they could offer several potential benefits. Their abil-
ity to generate hints, provide alternative explanations, and accommodate vari-
ous answer formats makes them flexible and adaptive. However, our finding that
LLMs sometimes mark correct answers as incorrect—even when provided with
the solutions—suggest that LLMs integrations will need to be carefully evaluated
before deployment.

Additionally, their use of positive reinforcement—such as motivational
nudges and encouraging feedback—could help foster an engaging learning envi-
ronment, provided that motivational support is offered equitably to all learners.
For example, several chat logs included statements like, “Way to go, you are close
to the answer!” or “That’s not right, but let’s keep trying.” These reinforcements
might help motivate learners to persist and promote sustained engagement with
educational tools. This approach aligns with many learners’ needs for construc-
tive feedback and encouragement [8]. Future research should systematically eval-
uate the motivational potential of LLMs’ interactions and whether they translate
into improved learning outcomes.

6 Limitations and Future Work

One limitation of our LLM evaluation methods is that they were conducted as
an offline evaluation instead of with students. We chose our approach because
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we knew that LLMs have reliability issues and we did not want to cause harm
to students by giving them incorrect tutoring guidance during our experiments.
Although our approach provides a means of safe, controlled evaluation, it may
not fully capture the unique ways in which real students would engage with
LLM tutors. A future iteration of this work could involve deploying the sys-
tem in real-world educational settings and analyzing chat logs generated from
authentic student interactions to gain a more comprehensive understanding of
LLM performance. However, since our work suggests that LLMs make mistakes
in just over half of their student tutoring dialogues, future research should try
to mitigate the risks that LLMs pose to students.

Furthermore, this study was conducted using an earlier version of the Appren-
tice Tutors platform, which focused exclusively on math-related questions. The
Apprentice Tutors platform has since been expanded to include other types of
questions, such as those related to nursing education. Future research could
explore how LLMs perform in this and other domains, extending the scope of
evaluation to understand their domain-specific adaptability and effectiveness.

Finally, another limitation is that the analysis presented was restricted to a
set of LLMs within the ChatGPT family. With the rapid development of new
LLMs, such as Google’s Gemini, Anthropic’s Claude and several open-source
LLMs, there is an opportunity to expand this study to evaluate these emerg-
ing models too. Comparing performance across a broader range of LLMs would
provide a more holistic view of their strengths and weaknesses in educational con-
texts. In addition, this work does not thoroughly address potential biases and
limitations in LLM-generated tutoring content—a critical issue for ensuring safe
and effective educational use. Lastly, this study used the publicly accessible ver-
sions of the ChatGPT models. In practice, commercial production environments
often deploy models that are fine-tuned to specific domains or tasks. Evaluating
a custom-tuned LLM tailored to specific educational needs could offer a more
accurate view of how these tools would perform in real-world applications.

7 Conclusion

In this study, we evaluated the ability of various LLMs to solve college algebra
problems and to interactively provide step-by-step tutor guidance. We evaluated
multiple models, including GPT-3.5 Turbo, GPT-4, GPT-40, ol Mini and ol
Preview, identifying both their strengths and limitations. The results presented
in this study, though commendable, are significantly lower than the 100% accu-
racy achieved by traditional intelligent tutors on the same set of problems. While
we saw an overall final accuracy of 85.5% with the automated tutor-based eval-
uation and 88.6% with our interactive prompting-based evaluation, our analysis
of the entire LLM tutoring dialogues showed that only 56.6% were entirely cor-
rect. This discrepancy suggests a core limitation of using LLMs as tutors: while
they often generate correct final answers, ensuring the pedagogical soundness
and accuracy of intermediate steps remains challenging.

Despite these limitations, LLMs exhibit several capabilities that have the
potential to improve learning outcomes. Their flexibility in accepting diverse
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answer formats, the ability to generate hints and alternative problem expla-
nations, and the use of positive reinforcement, such as motivational nudges,
could help foster a more supportive and engaging learning environment. How-
ever, there are risks associated with the deployment of LLMs in educational
settings. For example, biases within the models may lead to inflexibility in ped-
agogical approaches, such as internal biases that favor some methods of solving
problems over others. Furthermore, inaccuracies in responses—with around one
in two dialogues containing errors—can undermine the trust of students in the
guidance of the tutor and reduce their confidence in the system. To address these
challenges, future work might explore how to leverage their independent capa-
bilities, such as problem generation, hint generation, and positive reinforcement.
By balancing these strengths with strategies to manage and mitigate their limi-
tations, LLMs could effectively supplement other educational technologies, such
as intelligent tutoring systems.
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