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ABSTRACT
Intelligent Tutoring Systems (ITSs) have shown great potential in
enhancing how education is delivered. Many existing ITSs leverage
Reinforcement Learning (RL) to optimize the sequence of exercises
proposed to the learner. These systems adapt content based on the
student’s performance on previous exercises, addressing knowl-
edge gaps while advancing through mastered concepts. However,
they typically operate at the whole-exercise level, without visibility
into the intermediate steps. In reality, learners may fail to solve
an exercise because they encounter di�culties with speci�c sub-
steps. Existing ITSs rely on datasets that do not include exercise
decomposition in steps.

To overcome this limitation, in this paper, we employ GPT-o3-
mini to generate synthetic step-by-step solutions for mathematics
exercises from the Junyi Academy dataset. To evaluate if these
synthetic steps are useful in reaching the �nal solution, we use
three models of varying size from the Llama family to simulate
students of di�erent knowledge levels (i.e., low, medium, high) and
verify if the step-by-step guidance increases their problem-solving
capabilities.

By comparing direct answers for exercises to answers that lever-
age an incremental step guidance strategy, models successfully
solve up to 42% more exercises. This evaluation serves as a foun-
dation for creating synthetic step-by-step solutions that can be
employed to develop next-generation step-aware ITSs tailored to
students’ speci�c knowledge gaps.
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1 INTRODUCTION
Intelligent Tutoring Systems (ITSs) are Arti�cial Intelligence (AI)-
based systems that act as human tutors, providing personalized
feedback and dynamically adapting the sequence of exercises based
on the learner progression, enhancing learning outcomes [9].

Previous studies have explored the development of ITSs that
leverage Reinforcement Learning (RL) algorithms to adapt the se-
quence of exercises [5, 7, 13] based on the learner’s performance
on previous exercises.

However, these systems are limited because they rely on datasets,
such as Junyi Academy [12], which provide the text of exercises and
whether the student has been able to solve them, without o�ering
step-by-step solutions. Consequently, it is not possible to create
algorithms that adapt to the learner’s speci�c di�culties within
individual exercises.

In particular, for mathematics exercises, since learners may not
be able to directly solve an exercise because they may struggle
with its intermediate steps [17], it is crucial to reinforce the learner
knowledge relative to challenging steps, adapting the sequence of
exercises proposed by an ITS to repair those knowledge building
blocks.

Building a step-aware adaptive ITS requires a step-by-step de-
composition of a set of exercises and their associated knowledge
graph (i.e., a graph representing the dependencies among topic
exercises). This data would allow the training a RL algorithm, sim-
ulating students that interact with the system, and embedding the
RL model into an ITS [13].

In this work, we leverage GPT-o3-mini1, a model optimized for
STEM reasoning [11], to generate step-by-step solutions for the
exercises from the Junyi Academy dataset. For each exercise, we
prompt GPT-o3-mini to decompose the problem-solving process
into a sequence of intermediate steps. Additionally, for steps identi-
�ed as particularly challenging, we instruct the model to further
break them down into more granular sub-steps, creating a two-tier
guidance structure that can adapt to di�erent levels of di�culty
within the same problem.

To investigate whether the steps can e�ectively provide guidance
to the �nal solution, we simulate students using three distinct
models of varying size from the Llama family: Llama2-7b-chat [16],
Llama3-8b-instruct, and Llama3-70b-instruct [2], representing three
di�erent knowledge levels (i.e., low, medium, high). We assume
that larger models (in terms of parameter count) are capable of
more advanced reasoning and problem-solving capabilities and can
1version: 2025-01-31

https://orcid.org/0009-0002-5599-6477
https://orcid.org/0000-0002-3200-2348
https://orcid.org/0000-0001-7647-6652
https://doi.org/10.1145/3698205.3733940
https://doi.org/10.1145/3698205.3733940


L@S ’25, July 21–23, 2025, Palermo, Italy Russo et al.

represent students with higher levels of domain knowledge, and
vice-versa [4].

We evaluate each model’s performance with and without step
guidance. Interestingly, while larger models solved more exercises
overall, smaller models showed greater relative improvement from
step-by-step guidance. Findings show that models exposed to in-
cremental step guidance with additional sub-step decomposition
successfully solve up to 42% more exercises than when asked to
generate direct answers. These results provide empirical demonstra-
tion of the e�ectiveness of language models in generating exercise-
speci�c decomposition steps that can serve as the foundation for
developing next-generation RL-based adaptive ITSs capable of �ne-
grained personalization.

2 BACKGROUND
Researchers have been investigating how to adapt the sequence of
learning items presented to the learner based on the knowledge
state and goals.

Liu et al. [7] developed CSEAL, a framework that combines the
actual knowledge level of the learner and the concept dependency
structures to personalize learning pathways. Similarly, Zhang et al.
[19] created a framework aware of the di�culty of items, reordering
their sequence in an incremental manner based on item di�culty to
achieve the learner’s goals. Li et al. [5] have enhanced the learning
path recommendation by employing a Hierarchical RL algorithm
that plans the path to follow to master a learning element. The
learning elements sequence is continuously re-adapted based on
the di�erence between the acquired knowledge of the learner and
the goal to achieve.

However, if the learner is not able to solve an exercise, these ITSs
may understand that the learner lacks the requisite knowledge for
the entire exercise and inaccurately adapt the sequence of learning
items. The educational datasets these works rely on [12, 14] lack
of step-by-step resolutions that can be leveraged to create a step-
aware ITS. By decomposing the exercises into steps and letting
the learners solve each step, it is possible to identify the exact
point where they struggle and dynamically adapt the learning path,
targeting the strengthening of the knowledge behind it.

Recently, LLMs have been leveraged to provide Socratic guidance
to students, demonstrating improved performance by decomposing
problems into steps [6, 15]. However, these abilities have primarily
been utilized for tutoring evaluation, not for the generation of
synthetic data or enhancement of existing datasets.

In this work, we leverage the LLMs training knowledge in math-
ematics [1, 11] to generate step-by-step solutions for mathemat-
ics exercises of the Junyi Academy dataset [12], and we evaluate
whether these generated decompositions are helpful in solving the
whole exercise. Building on recent studies that have demonstrated
the potential of LLMs to simulate diverse student pro�les and learn-
ing behaviors [8, 18], we use varying-sized models to assess the
e�ectiveness of our synthetic step decompositions across di�erent
knowledge levels.

We hope our contribution could enhance existing educational
datasets with �ne-grained solution paths and lay the groundwork
for next-generation step-aware RL algorithms that can adapt to

students’ speci�c di�culties within individual exercises rather than
treating exercises as the units.

3 METHODOLOGY
The methodology is divided in three steps detailed below. Figure 1
illustrates our approach to generate step-by-step solutions and in-
vestigates their e�cacy in guiding in the resolution of mathematical
exercises using the Llama models.

3.1 Dataset Preparation
For our work, we used mathematics exercises from the Junyi Acad-
emy dataset2, a K-12 mathematics exercise dataset and their relative
knowledge graph. Exercises were originally stored in an HTML
format with embedded solutions; therefore, we developed a custom
JavaScript script to extract the text and the solution.

To ensure dataset consistency, we implemented two pre-
processing steps. First, we excluded exercises with screen elements
that require the user interaction (e.g., drag and drop an element), as
these would have been complex to manage within our LLM-based
evaluation. Second, we removed exercises from topics with fewer
than 10 sample to evaluate the models in mathematical areas with
su�cient representation in the dataset.

3.2 Step-by-Step Solution Generation Process
We prompted an instance of GPT-o3-mini to provide the �nal so-
lution of the exercises from the Junyi dataset while decomposing
the problem-solving process into steps, and, if a step was consid-
ered di�cult, to further break it down into sub-steps. Given the
original Chinese language of the Junyi exercises, we simultane-
ously requested their English translation. Then, we employed a
separate GPT-o3-mini instance to validate whether the generated
�nal answers matched our extracted ground truth.

3.3 Experimental Design
We conducted three distinct experiments using three di�erent LLMs
of varying size, Llama2-7b-chat, Llama3-8b-instruct, and Llama3-
70b-instruct, to simulate students of three capability levels: low,
medium, and high, respectively.

The simulation is conducted under three di�erent conditions:
(i) the models are asked to directly solve an exercise, (ii) if they
fail, they are incrementally provided with the steps generated by
GTP-o3-mini, and each time asked to solve both the new step and
the whole exercise, (iii) if the models fail to solve a step and the
failed step contains sub-steps, the model incrementally receives
these additional sub-steps, and is asked for the exercise, step, and
relative sub-step solutions.

By comparing the performance of these three approaches, we
aim to determine whether stepwise guidance leads to improved
outcomes.
Experiment 1: Zero-shot Resolution
We initially prompted each Llama model to provide a direct answer
to the exercise without any guidance.
Experiment 2: Step-by-Step Guidance
We de�ne # as the number of �rst-level steps previously generated

2https://github.com/junyiacademy/junyiexercise, last-accessed 2025-04-05
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Figure 1: Overview of our approach. We generate step-by-step solutions and verify the correctness of the �nal answer. Then, we
ask a Llama model to solve the exercise, verify the correctness of the answer, eventually iterating over steps and sub-steps if
the exercise is not solved.

by GPT-o3-mini for a given exercise and available for step-by-step
guidance. For exercises where the initial attempt failed, we imple-
mented an iterative process. At each iteration=, with= 2 {1, . . . ,# },
we provided the models with the previous (= � 1) steps and their
solutions, and prompted the models to solve both the =th step and
the complete exercise. This iterative process continued until either
the model successfully solved the exercise or the # available steps
were exhausted.
Experiment 3: Second-level Guidance
Building upon the same strategy used for the second experiment, we
implemented a more granular guidance approach for cases where
models struggled with speci�c steps. When a model failed to cor-
rectly solve a step for which sub-steps were available, we iteratively
provided the model with these sub-steps. The models were then
prompted to solve the original exercise, the challenging step, and
the newly introduced sub-step, creating a two-tiered guidance struc-
ture for particularly challenging aspects of the problem-solving
process.

3.4 Evaluation Methodology
For the three experiments, we employed GPT-o3-mini for the assess-
ment of solution correctness across all granularity levels: complete
exercise, intermediate step, and sub-step solutions.

We give GPT-o3-mini the answer generated by the Llama model
and the corresponding exercise solution, asking to compare them
and return a score, 1 if they are equal, 0 otherwise. The solutions
comparison leverages GPT-o3-mini, rather than an equality direct
comparison, as the solutions may have multiple valid representa-
tions and the LLM can be more robust against them.

Figure 2: Distribution of exercises based on the number of
steps generated by GPT-o3-mini.

4 RESULTS
After implementing the �ltering process described in Section 3.1,
the initial 968 exercises from the Junyi Academy dataset were re-
duced to 622 exercises. Subsequently, we generated step-by-step
solutions for each exercise using GPT-o3-mini, which led to 526
correct solutions.

Figure 2 illustrates the distribution of the 526 exercises based
on the number of steps generated by GPT-o3-mini. The majority
of problems is decomposed into 2-4 steps, with fewer exercises
requiring either a single step or more than 4 steps.

Figure 3 displays the percentage of correctly-solved exercises
as a function of the number of �rst-level guidance steps provided
to the Llama LLMs. All models exhibit substantial improvements
when empowered with step guidance: Llama-3-70b-instruct solved
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Figure 3: Percentage of correctly solved exercises in relation
to the number of �rst-level guidance steps provided to three
di�erent Large Language Models.

Model Without Guidance With Steps With Sub-steps �

Llama2-7b-chat 53 248 266 213
Llama3-8b-instruct 180 394 402 222
Llama3-70b-instruct 300 467 477 177

Table 1: From left to right, number of correctly-solved ex-
ercises by the three Llama models when: asked to directly
solve the exercise, provided with �rst-level steps guidance,
and provided with additional sub-steps guidance. The right-
most column reports the di�erence between the number of
exercises solved with sub-steps and the one without guid-
ance.

32% more exercises, while Llama-3-8b-instruct and Llama-2-7b-chat
solved 41% and 37% more exercises, respectively.

Additionally, Table 1 reports the number of correctly solved
exercises by the three models under three conditions: directly solve
the problem (i.e., without guidance), steps guidance, additional
sub-steps guidance. In the end, the models correctly solve 177, 222,
and 213, more exercises, compared to the scenario without any
guidance, leading to a maximum improvement of 42% obtained
using Llama3-8b-instruct.

The three model variants in our study e�ectively simulate stu-
dents with di�erent knowledge, as shown by their initial perfor-
mance di�erences when solving exercises without any guidance.
The largest model, Llama3-70b-instruct, re�ecting a student with
high knowledge, achieved the highest baseline accuracy, while the
smallest model, Llama2-7b-chat, performed most poorly. All mod-
els exhibited signi�cant and consistent performance gains when
provided with step-level guidance, demonstrating the steps e�ec-
tiveness to conduct the learner to the solution. The models’ perfor-
mance plateau beyond 4 steps due to the limited number of exercises
requiring 5 or more solution steps in our dataset (see Figure 2). The
gain was further ampli�ed with the introduction of step decom-
position into sub-steps, although the magnitude of improvement
varied by model capacity. The largest model successfully solved
more exercises in absolute terms, when provided with sub-steps,
re�ecting its enhanced capability to leverage the provided guidance.

Lastly, our analysis reveals an inverse relationship between
model size and performance gain from guidance. While Llama-
3-70b-instruct successfully solved more exercises, smaller models
gained more substantial improvements (see Table 1). This �nding
suggests that guidance may be particularly valuable for addressing
knowledge gaps in less-prepared learners.

5 CONCLUSIONS AND FUTUREWORK
In this work, we have generated step-by-step solutions using GPT-
o3-mini for 526 mathematics exercises from the Junyi Academy
dataset. Using three models of di�erent sizes from the Llama family
to simulate students of three di�erent knowledge levels, we have
demonstrated that the previously generated step-by-step solutions
can be a valid support to provide incremental guidance, allowing
Llama models to solve 42% more exercises in the best case scenario,
compared to the zero-shot exercise resolution.

However, while our work has shown that guided resolutions
help LLMs to solve mathematical problems, it comes with some
limitations. The �rst one is that our approach relies on step-by-step
solutions generated by another LLM (i.e., GPT-o3-mini), which can
hallucinate and produce intermediate steps that may be incorrect
[3], not useful for the solution of the overall problem [17] or revel
the solution too early [10]. We verify the correctness of the solu-
tion generated by GPT-o3-mini by only comparing its �nal answer
for the exercise to the ground-truth �nal solution, but we do not
perform a veri�cation on the generated steps. Future works can
address these by manually inspecting a sample of the generated
steps, to ensure they do not include the solution of the exercise.

Secondly, we only apply our methodology on the Junyi Acad-
emy dataset. Despite including dependencies between exercises,
which can be valuable for future the development of a RL model,
this dataset targets K-12 students only. Future works could extend
experiments by including datasets like MathOdyssey [1] to assess
the generalization of our approach across exercises di�culty levels.

Additionally, in the Solution Generation Process (see Section 3.2),
we have generated a �xed exercise decomposition that is not dy-
namically adapted to the model’s actual understanding at inference
time. Our approach can be further re�ned to perform dynamic step
generation, so that the step provided to the model is context-aware
and adapted to the actual model comprehension.

Finally, the next step would be to use the generated step-by-step
solutions to train and evaluate step-aware RL algorithms that could
be embedded into ITSs to better support learners.
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