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Manually translating web designs into code is a costly and time-consuming process, particularly due to the
frequent iterations and refinements between designers and developers. Deep learning techniques, which
possess the capability to automatically translate designs into functional code using an encoder-decoder
architecture, have emerged as a promising solution to enhance this tedious process. However, many current
methods depend on simplistic datasets that do not capture the diversity of components found in modern
websites. Additionally, the potential of transformer-based models, which have enabled significant progress in
vision and language modeling tasks due to their scalability and ability to handle cross-modal relationships,
has not been investigated in this context. Addressing these limitations, this paper contributes with: 1) a
web scraping methodology to automatically collect and process a diverse dataset of real-world websites
with reduced noise and complexity, 2) a synthetic dataset of webpage mockups along with their sketched
conversions, and 3) an evaluation of two recent multimodal transformer architectures on these proposed
datasets. Results on synthetic and sketch-based datasets demonstrate the architectures potential as effective
design-to-code automation solutions, while identifying remaining challenges in modeling real-world website
complexity.
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1 Introduction

As people’s participation in the digital world continues to increase at a rapid pace, web applications
have become crucial in establishing and maintaining an effective online presence for both individuals
and organizations. The virtual face of an entity, whether it is a personal blog or a corporate site,
plays an important role in creating the first impression and ensuring sustained engagement with the
audience. As a result of their high importance, there is a growing requirement to develop complex,
attractive, and sleek websites. A crucial step of website creation involves conceptualizing the User
Interface (UI) design through various stages, from sketching to prototyping. This iterative process
engages end users, designers, and developers, enabling them to deliberate upon the website’s
proposed layout, composition, and interactivity.
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Three primary artifacts currently dominate the web design landscape: hand-drawn sketches,
wireframes, and mock-ups [22, 30, 36]. A sketch serves as a preliminary, often rudimentary, rep-
resentation of the intended UI design, enabling designers to swiftly consolidate and visualize
their ideas. A wireframe, acting as a visual prototype, pinpoints the positioning of UI elements
and content on the site. Lacking styling, graphics, or colors, it resembles a website’s blueprint. A
mock-up stands as a more refined and visually enriched version of a wireframe. It encompasses
styling, graphics, colors, typography, and other intricate visual specifics. After obtaining approval
for a wireframe or mock-up design from end users or other stakeholders, a web developer proceeds
with the actual website creation.

Given that design and implementation typically fall under separate teams, the journey from
concept to completion is not just time-consuming but can also be expensive. Such professionals
invest immense effort in iterating, designing, and developing a site to meet end users’ expectations.
From an engineering interactive systems perspective, these challenges are more than technical
hurdles; they underscore the importance of robust development pipelines that can streamline UI
design, validation, and iteration with minimal back-and-forth between diverse stakeholders.

Considering these challenges, the concept of automatic website generation has arisen [8, 38].
It refers to the use of software and technologies to automatically produce websites without the
need for manual coding. It integrates design and implementation phases, minimizing the need for
back-and-forth adjustments between separate teams. By doing so, automatic website generation
ensures a more direct generation of code from design intent. Consequently, the reduced iterations
lead to quicker delivery times, cost savings, and fewer chances for miscommunication or errors that
arise from repeated handoffs between design and development teams. Furthermore, the integration
of automation allows for real-time adjustments based on immediate feedback loops. In traditional
development scenarios, alterations post-deployment often require a revisit of the entire design-
development-deployment cycle. With automatic generation, modifications can be made on the fly.
Moreover, automatic website generation can help to democratize web creation. Those without a
technical background or coding skills can still venture into designing and deploying professional-
level websites. This may bridge the gap between developers and end users, while fostering a more
inclusive digital landscape where creativity is not bounded by technical constraints. We posit that the
problem of automatically translating intricate design artifacts into functional code requires not only
algorithmic innovations but also an engineering methodology that integrates user-centric design,
rigorous data curation, and real-world deployment concerns. This paper addresses that challenge by
proposing a system capable of ingesting real-world design inputs and efficiently producing runnable
prototypes, thereby advancing the engineering of fully interactive web applications. Within the
predominant modalities for automatic website generation, the mock-up-driven approach, as the
name implies, derives its functionality from mock-up designs and wireframes. Directly converting
detailed mock-up designs or wireframes into functional Ul code obviates the conventional, and
manual transition from design to coding. The fidelity of the resulting websites can be considerably
high, given the detailed nature of mock-ups, thereby ensuring a closer alignment with the designer’s
original intent. Similar to the mock-up-driven approach, which utilizes the most refined artifacts,
the sketch-driven conversion method uses the most preliminary stage of design representation:
hand-drawn sketches. The approach is particularly beneficial for novices; it offers an opportunity for
those unfamiliar with web development processes to transform their basic sketches into functional
websites. Sketches serve as a natural form of human-AlI interaction because they harness the
inherent human ability to visualize and express ideas through simple drawings, irrespective of
technical expertise. This universal method of representation ensures intuitiveness and ease of use
for a wide range of users, bridging the gap between imagination and digital creation. Moreover,
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for designers, sketch-driven conversion allows them to rapidly test their interactive prototypes,
making it easier to iterate and refine their ideas at a faster pace, as well as gain feedback.

Two modalities of mockup-driven and sketch-driven automatic website generation are possible:
the heuristic-based approach and the end-to-end approach. The heuristic-based approach (e.g., [38]
processes sketches and mock-ups by leveraging a set of predefined rules and patterns. In this
approach, algorithms make determinations based on known patterns and guidelines. For instance,
in the context of automatic web UI creation, a rectangular shape in a mock-up might be recognized
as a button, and a series of parallel lines might be interpreted as text fields. The algorithm then
generates the necessary code based on these identified patterns. Yet, this method has its limitations.
Heuristic-based systems can be inflexible, and their effectiveness heavily relies on the quality
and capabilities of the rules they are based on. If a design includes a novel element or a unique
layout, the heuristic model might misinterpret it or fail to recognize it altogether. Moreover, it
is a challenge to constantly update and maintain the ruleset as design trends evolve and as the
complexity of designs increases. This means that while heuristic-based methods are generally
efficient for more standardized and common designs, they may fall when faced with more intricate
or innovative mock-ups. On the other hand, the end-to-end approach (e.g., [65]) adopts deep
learning models to handle the entire process of converting a mock-up to a functional web interface.
Instead of operating on a set of fixed rules, these models are trained on vast amounts of data,
comprising various mock-ups and their corresponding web UI outputs. The larger, more diverse,
and higher quality the training data, the better they become at making accurate predictions. The
advantages of the end-to-end method are several. First and foremost, it can handle a broader array
of designs, including those that might fail for heuristic systems. Given adequate training data, it
can continually adapt and improve [31], keeping pace with evolving design trends. Furthermore, it
can discern and learn subtle patterns in designs that might not be explicitly defined in heuristic
rules. To illustrate, consider an unconventional mock-up where buttons are represented by ellipses
instead of the typical rectangles. While a heuristic system might struggle to identify these as
buttons due to its rule-based nature, an adequately trained end-to-end model could recognize
them based on its exposure to diverse design patterns. Building on the innovations offered by
deep learning architectures, end-to-end approaches have emerged as a powerful tool for turning
mock-ups and wireframes directly into functional GUI code. The encoder-decoder framework, a
common structure in these methodologies, traditionally leverages convolutional neural networks
(CNNs) to parse image features, converting visual representations into intermediate language
constructs, which are subsequently decoded to yield the desired code. Pix2code [7] was the first
contribution introducing an end-to-end approach for the task; it is capable of translating web user
interface screenshots and transcribing them into domain-specific language (DSL) representations,
which can then be compiled into specific HTML code. While these deep learning models offer
multiple advantages, their performance is primarily bottlenecked by the limited availability of
specialized training datasets. Many of the currently available Ul/code datasets lack diversity, often
being overly simplistic and not adequately representative of the complexities encountered in real-
world scenarios. This simplicity limits the true applicability of these models in practical settings.
The models, having been trained on such datasets, do not generalize well when exposed to more
complex, real-world designs, thereby hampering their effectiveness. Moreover, existing approaches
to Ul code conversion predominantly employ Long Short-Term Memory (LSTM)-based structures
for decoding the visual representations and the potential of transformer-based architectures remains
largely unexplored in this context. The attention mechanism, central to transformer models, can be
especially advantageous for multimodal tasks as it learns to capture relationships between visual
components and their corresponding code representations, potentially leading to more accurate
design-to-code conversion.
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The contributions of this paper are threefold and can be summarized as follows:

e Web Scraping Pipeline: To evaluate our system for automatic code generation from real-
world web design, we introduce a specialized scraping pipeline to curate and clean online
scraped code. By eliminating non-essential tags and scripts for visual appearance, our ap-
proach ensures that the resultant codes are less noisy. This, in turn, optimizes the transition
from design mock-ups. Using the scraping method, we build our named “WebUI2Code”
dataset consisting of 8,873 screenshot-code pairs.

e Dataset Enhancement: To overcome the limitations of existing datasets of mockups-code
pairs, we generate a synthetic dataset of Bootstrap! websites that mirrors the diversity of
web designs. Furthermore, we leverage it to adapt our model to enable direct code generation
from sketches.

e Architectural Evaluation: Recognizing the limitations of traditional RNN-based methods
for design-to-code tasks, we benchmark both a smaller multimodal transformer-based model
(Pix2Struct [33]) and a larger-scale vision-language model (FerretUI-GemmaZ2B [63]) on our
real-world and synthetic datasets. Results demonstrate that transformer architectures sig-
nificantly outperform LSTM-based baselines [8], offering improved handling of complex UI
layouts. Additionally, we highlight that while the larger Gemma2B model achieves slightly
higher accuracy, it comes at a higher computational cost, thus underscoring the trade-off
between resource efficiency and overall performance for large-scale web Ul generation.

Through our work, we aspire to advance research in the realm of design-to-code transitions,
with a special focus on real-world settings and designer needs. We believe that the methodologies
we introduce can foster in the future a more accessible and efficient creation of web interfaces. The
training and validation scripts and the datasets are available at https://bit.ly/3RzpcOH.

2 Background and Related Works

Automatic website generation has emerged as a solution to ease the challenges associated with
web design and development [7, 8, 38, 48, 54]. Automating the process makes it possible to quickly
and efficiently create websites from design artifacts without wasting time on manual coding There
are three primary methodologies underpinning automatic website generation: a) example-based, b)
Artificial Intelligence-driven, and c) mock-up-driven.

Example-based automatic website generation allows users to create websites by referencing and
adapting features from existing, professionally designed sites; by referencing real-world designs, it
ensures quick customization and aesthetic appeal without the need for in-depth technical knowledge.
Artificial Intelligence-driven website generation employs Al algorithms to design and build person-
alized websites based on user preferences, requiring minimal user intervention [2, 3, 12, 16, 24, 39].
Mock-up-driven automatic website generation transforms visual mock-ups or sketches of websites
into working digital prototypes, often using heuristic techniques [5, 37, 45, 47, 50, 64] or deep
learning models [21, 34, 65]; it ensures that the final product closely aligns with the initial vision.

Each method has its nuances. Mock-up-driven generation streamlines the transformation of
a visual idea into a working prototype, but it requires a clear mock-up or further programming
and designing effort in the case the code generation starts from wireframes or sketches [17]. The
example-based approach provides more freedom to those less technically inclined, allowing for
customization based on real-world examples, but it might not be as tailored or unique. On the other
hand, while Al-driven tools are powerful and user-friendly, they might not always offer the depth
of customization that professionals need, and the results might vary based on the sophistication of
the Al algorithms [4, 11, 14, 20, 32, 62].

1https://getboo‘[strapcom, last visited on March 1, 2024
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2.1 Example-based Automatic Website Generation

Many novice designers and developers, often with minimal web expertise, increasingly turn to pre-
designed website templates. These templates help them establish aesthetically pleasing sites without
delving into the complexities of code [19]. Though such templates offer customization options,
including theme colors, font adjustments, and image uploads, their scope remains limited. Thus,
some users might find them insufficient for their specific needs. Addressing this issue, researchers
devised a method allowing those with little technical know-how to easily construct custom websites
inspired by real-world, professionally designed sites. This system empowers beginners to explore
these design exemplars, discern layout structures, select appealing elements and themes, and
amalgamate these into their own designs through automated code generation.

Myers et al. [10] presented WebCrystal, a game-changing tool facilitating the extraction and
replication of desirable HTML and CSS attributes from existing websites. The tool guides users
with pre-set queries about adjusting HTML/CSS features. These questions come with textual
descriptions, helping users choose the right attributes. WebCrystal then generates the suitable
HTML/CSS code, which can be integrated directly or tweaked further. However, it has two main
limitations: it is compatible only with HTML and CSS, neglecting client-side scripts like JavaScript,
and occasionally, the extracted code might not perform identically across different sites. Hashimoto
et al. [23] introduced a system allowing UI designers to probe for site designs mirroring their
sketched layouts. Using a crawler, it amasses web pages into a database. When users sketch a desired
layout, the system offers sites with similar designs. This aids novices in selecting and understanding
HTML/CSS design structures. Still, due to database constraints and matching algorithm limitations,
it does not always locate the perfect design match. Swire [29], geared towards mobile UI/UX design,
lets designers explore Android UI designs resonating with their sketches or screen captures. Unlike
the method by Hashimoto et al. [23], which relied on heuristic analysis, Swire uses a deep learning
approach. However, Swire struggles with unique Ul widgets or varied colors. Xiaofei [18] developed
a tool that identifies Android apps resembling hand-drawn GUI sketches. It translates sketches
into an intermediary language, applies deep learning to generate GUI frameworks, and then finds
analogous apps from a database. While promising, it does not consistently provide perfect matches
due to search strategy limitations. Behrang et al. [6] introduced GUIFetch, offering Java source code
for Android apps closely matching users’ GUI sketches. It involves two main stages: analyzing to
detect potential Android apps and computing similarity scores between the sketched GUI and app
GUISs. This tool aids in the tedious UI development phase, but it cannot detect or compare images.

2.2 Al-Based Website Builders

Al-driven website builders collect user preferences through a series of predefined questions [35].
Following this, they autonomously design and construct personalized websites based on the user’s
preferences, theme, and content, obviating the need for manual coding [35]. Consequently, even
those without a background in web design or tech can establish their online presence using these
platforms. A few pioneering commercial platforms are highlighted below: The Grid [41] was an Al
web design tool that guided users through selections of color schemes, web components, fonts, and
layout patterns. After inputting content, The Grid crafted the website, and users could recalibrate
their initial style choices for further refinements. One drawback was its minimal design editing
features [41]. Bookmark [9] is a cloud-based Al website platform featuring an Al Design Assistant
(AiDA) that allows users to simply and quickly build responsive websites [42, 51]. Through a
question-intensive first phase, it aims to meet the layouts and styles specified by the users. On
top of this, it offers an expansive library of e-commerce and industry-specific templates [59].
Firedrop[43] specialized in building websites for small enterprises. By chatting with a virtual
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assistant named Sacha, users could communicate their design preferences, which Firedrop then
translated into the final design [35, 43]. Wix ADI (Artificial Design Intelligence) [57, 58], now
evolved into the Wix Al website builder, has established itself as a leading contemporary Al website
platform, offering affordability and customizability. It excels in producing websites by integrating
optimal design layouts and components, often using a conversational interface [15, 58]. In 2018,
Leia[26, 44] emerged as an Al website platform enabling the building of mobile-responsive sites
initiated by simple voice commands or keywords [44, 53]. Zyro [28, 60], introduced in 2019 and
now integrated into the Hostinger Website Builder [56], specialized in crafting SEO-optimized,
responsive websites for small businesses with an array of template options and a user-friendly
drag-and-drop interface [40]. Additionally, it offered complimentary Al tools like a logo maker,
although its initial template range was somewhat restricted [60]. While these AI website platforms
signify an important shift in web development, a comprehensive exploration of their underlying
mechanisms and research is often not publicly accessible.

2.3 Mockup-driven Automatic Website Generation

A prevalent strategy to transform mock-up designs of websites into working prototypes harnesses
heuristic techniques. The heuristic-based approach to website generation focuses on the use of
domain-specific rules to guide the process. Such techniques typically extract web elements, discern
their semantic relations, choose the fitting tags for these elements, structure the web elements
hierarchically, and subsequently produce the source code. The method proposed by Huang et al. [48]
identifies vertical and horizontal separators on the mock-up based on color differentiation. The
resultant sections contain distinct web elements for which tags are generated. The tag generation
uses the Random Forest method [27] for basic elements and a bottom-up approach for more complex
elements. The heuristically proofed tags then inform the final website’s HTML and CSS structure.

Shifting our focus to mobile app development, Nguyen et al. [2] introduced REMAUI, a method
that automates Ul source code from mock-ups for mobile apps. REMAUTI’s six-step process begins
with the Tesseract OCR engine, which extracts text from screen captures. To rectify OCR’s occasional
misclassifications, domain-specific heuristics are employed. Alongside, computer vision methods
identify UI boundaries to establish a UI hierarchy. REMAUI then refines this hierarchy, constructing
a Ul suitable for mobile apps. Upon testing, REMAUI averaged a 9-second runtime but faced
challenges with certain OCR limitations and prototyping multi-page applications. P2A [39], in
contrast, addresses REMAUT’s limitation by prototyping animated mobile Uls from screen captures.
Like REMAUI, P2A employs computer vision and OCR to detect UI widgets, but with the added
capability of enabling users to add custom animations and transitions. After integrating these
enhancements, P2A produces an executable with necessary asset files.

However, while heuristic methods can be accurate and efficient, they come with the limitation
of the inherent imperfections of heuristic rules, which might not account for every scenario or
outlier. Transitioning from heuristic, a distinctly different approach gaining traction in the domain
of website generation is the use of end-to-end methods. These methods utilize deep learning models
to transform website mock-ups or sketches directly into operational GUI code. They harness deep
learning classifiers for converting visual layouts to code via an encoder-decoder setup. Notably, this
strategy does not use preliminary image processing or heuristics but relies purely on the inherent
capabilities of neural networks to interpret and translate visual designs. It is within this area that
our contribution stands out, introducing innovative solutions to the existing challenges.

Pioneering this field, Beltramelli [7] introduced the “pix2code” model, leveraging a dataset of UI
snapshots from iOS, Android, and websites; the method works by producing intermediate Domain
Specific Language (DSL) code. This model includes one CNN and two LSTM networks. First, a CNN-
driven vision model encodes Ul captures into a fixed-length vector, an LSTM parallelly encodes the
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DSL context into an intermediate representation. These vectors combine and are decoded using an
LSTM, eventually classifying DSL tokens through a SoftMax layer. Several modifications of the
architecture of Pix2Code [7] then emerged: Zhu et al. [65] introduced a model emphasizing UI
components’ hierarchical layout in the code. A CNN-based vision model extracts visual details
from UI components, feeding a hierarchical LSTM decoder. With attention mechanisms, this
model demonstrated a more accurate GUI code generation. Liu et al. [34] substituted LSTM with
Bidirectional LSTM (BLSTM), improving the accuracy results on pix2code’s dataset. Han et al. [21]
aimed to create webpages with Cascading Style Sheets (CSS) styling details; their model utilized
object detection methods and attention mechanisms to determine CSS contents.

Kumar [32] developed SketchCode, converting hand-drawn wireframes to HTML; leveraging
the pix2code framework, it incorporated Gated Recurrent Units (GRUs) for encoding and decoding.
Yong Xu et al. [62] crafted image2emmet, detecting GUI elements in web images, converting them
to HTML-CSS; the tool integrated a Faster RCNN [46] and an LSTM, focusing on individual GUI
elements instead of entire websites. Chen et al. [11] transitioned web mock-ups to mobile design
code using a generative tool with RNN encoder and decoder and tested on 1208 real-world Android
screen captures.

Building on the work of prior models, our research identifies and addresses the limitations
often seen in RNN-based architectures, especially when considering their training dynamics and
scalability. While RNNs have been foundational in the earlier stages of automatic website generation,
the power of attention mechanisms, central to transformers architecture, remained untested in this
domain. We thus leverage a transformer architecture capable of translating visual representation
(images) into code tokens using an autoregressive encoder-decoder architecture. Our experiments
demonstrate its superior performance over existing methods in the pix2code [7] Dataset. Beyond
performance enhancements, this approach sets the stage for enhanced scalability, offering the
promise of more sophisticated capable in future of automatic website generation research.

The power of the end-to-end approach comes from the ability of these models to learn from vast
amounts of data and generalize to new, unseen data. End-to-end methods can sometimes produce
more fluid and adaptive results due to their learning nature. However, they might require significant
amounts of labeled data for training. Many current end-to-end solutions for Automatic Website
Generation are benchmarked against Beltramelli’s Pix2Code dataset. Such dataset, while beneficial
for initiating research, might not sufficiently capture the complexities of real-world web designs.
As a consequence, models trained solely on these datasets could be confined in their abilities and
may not generalize well when faced with more intricate and diverse designs outside their training
scope. Moreover, more complex proposed datasets, such as the one proposed by Chen [11], or
RICO [13], focus primarily on mobile UI hierarchies, not on compilable HTML code. This highlights
a significant gap in the available resources: a complex dataset of websites’ code and mock-ups
remains absent. The recently proposed WebUI dataset [61] does take a step in this direction by
comprising scraped HTML code of the webpage. However, it brings along unnecessary tags and
scripts that do not contribute directly to the reconstruction of the mockup. This excess of data
can introduce noise and complexities, making the task of code generation from mock-ups more
challenging than it needs to be. In response to this identified challenge, we introduce an HTML
bootstrap synthetic dataset that, unlike the existing datasets, offers a wide array of components
and layouts, targeting a diverse range of design elements to mirror different design scenarios, a
detailed comparison of the distribution of components is shown in 6. We leverage this dataset to
extensively train the transformer model. Given that the synthetic nature of our dataset allows
precise component localization and labeling, we leverage the “synz” dataset [49]—comprising
sketched web components by designers—to transform our dataset into a sketch-html dataset that
we use to train a sketch-to-code system. Furthermore, in order to test our system on real websites
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we introduce a web scraping pipeline specifically designed to clean the scraped code. By removing
unnecessary tags and scripts, our processed data becomes more streamlined and better suited for
code generation from mock-ups, overcoming the limitations of the WebUI dataset [61] for code
generation from mockup. This approach ensures that the models are not misled by irrelevant code.
We then utilize this method to collect a dataset 8,873 samples that we name “WebUI2Code” dataset,
and we use it to test the capability of our model to generalize beyond synthetic sketches.

3 Method

We contribute three interconnected components in order to advance the automation of web develop-
ment from visual designs and address the limitations of existing datasets and approaches. First, we
implement a web scraping pipeline to collect and process real-world website code and screenshots.
This pipeline retrieves the HTML rendered by websites and undergoes a sanitization process to
remove undesirable code elements like scripts and comments. It also locates and downloads any
associated CSS files, passing them through a custom parser.The processed HTML and consolidated
CSS files are then rendered to capture website screenshots. A classifier filters these screenshots to
retain only those preserving the original layout after code reduction.

Second, we implement a synthetic dataset generation method. This method procedurally creates
websites adhering to a popular front-end framework, allowing control over parameters like layout,
components, color palettes, and text. We integrate a recursive screenshot capture system to ensure
complete rendering of all page elements. To create a sketch variant, we substitute UI components
with hand-drawn sketches based on bounding box annotations.

Finally, we benchmark two transformer architectures for the design-to-code task: a Pix2Struct
model and a larger, more powerful Gemma2b model. Both models integrate a vision transformer
encoder—which processes rendered website screenshots—with an autoregressive transformer
decoder that sequentially generates the corresponding HTML and CSS tokens. We evaluate these
architectures on a real-world dataset obtained from our web scraping pipeline and on synthetic
datasets under multiple conditions. These conditions include scenarios where rendered elements are
replaced with sketches to simulate lower-fidelity designs, variations in website layout complexity,
and adjustments in token thresholds for code generation. This evaluation allows us to assess the
performance differences between the smaller Pix2Struct and the larger Gemma2b model across
diverse design-to-code scenarios.

3.1 WebUI2Code Dataset: Real-World Website Screenshot-Code

Our data collection procedure draws upon a multi-stage pipeline to retrieve, sanitize, and validate
websites, ensuring both high structural fidelity and practical manageability for subsequent machine
learning tasks. As illustrated in Figure 1, the process begins by fetching each target URL in headless
mode via Selenium and Google Chrome. The browser runs at a fixed resolution (1280x1024) to
standardize captures. A retry mechanism is triggered whenever a site fails to load fully. Common
pop-up dialogs (for example, cookie consent banners) are automatically dismissed, either through
the removal of their scripts or by simulating clicks on typical acceptance buttons.

Once the raw HTML is obtained, an automated sanitizing phase follows, where extraneous or
dynamic tags—such as script, meta, noscript, svg, and iframe—are systematically removed. The
sanitization script further rectifies malformed tags and substitutes asynchronous attributes (e.g.,
data-src, data-lazy-src) with their standard equivalents (src, srcset). This step also replaces
all external images with a uniform placeholder image to avoid the overhead of resource downloads
and to maintain consistent visual references. To reduce trivial layout variability, certain HTML
elements (<ol> tags, for instance) are converted to functionally similar ones (such as <ul>) when
no essential structural difference is detected. Following this filtering, a cleansing tool (clean-html)
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removes any remaining comments, erratic whitespace, or superfluous line breaks, then formats the
code with a consistent indentation scheme.

With the cleaned HTML in hand, the pipeline locates external CSS references, downloading each
.css file and parsing it via a custom extension built atop tinycss2. This parser identifies at-rules
and qualified rules, allowing selective removal of styles that do not match any tags or classes found
in the sanitized HTML. Properties considered strictly decorative or irrelevant to the website’s core
structure (such as transition animations or legacy browser-specific rules) are pruned to minimize
complexity. The remaining valid CSS is then merged into one consolidated file, and references in
the HTML are updated accordingly.

Before final screenshot capture, we apply a web framework detector that checks for traces of
frameworks like React, Gatsby, Nuxt, Backbone, or Next. Empirically, these frameworks introduce
significant client-side code that often fails to render properly after sanitization. Whenever such
frameworks are detected, the pipeline excludes the corresponding site from our final dataset to
preserve consistency. As an additional filter, any site whose sanitized HTML has zero CSS classes
or is trivially empty is likewise removed.

Following these exclusions, we generate screenshots by loading the local HTML file in the same
headless browser environment. By rendering the sanitized HTML and merged CSS, the captured
screenshot more accurately reflects the final “minimal” version of the webpage than if we had
captured the original online page. Figure 2 shows examples of the resulting mockups. The average
degree of reduction is substantial, particularly in the CSS: Table 2 shows that many pages go from
tens of thousands of lines to a few thousand or even fewer.

A final quality check employs a ResNet50 convolutional neural network [25] fine-tuned on a
labeled set of “good” vs. “bad” screenshots. This binary classifier learned to distinguish reliably
between pages that preserve essential layout and those that exhibit severe structural breakage
or missing styles. Its training set derived from earlier pilot experiments, in which we manually
assigned grades (0 to 5) based on visual fidelity and structural completeness. Poor scores typically
correlated with blank pages, severely distorted layouts, or frameworks that the pipeline could not
handle. By converting these manual labels into “good” and “bad,” the classifier reached over 80%
accuracy on a held-out test. After this final classification step, “bad” images are discarded, leaving a
curated collection of “good” screenshots and their processed HTML/CSS for subsequent research.

Three preliminary studies tested this pipeline on subsets of varying complexity: an initial ex-
periment on a small list of 51 blog sites, a second on 100 sites from the Majestic Million ranking,
and a third on 100 .blog domains. These incremental trials highlighted not only the pipeline’s
strengths (notably for simpler or blog-oriented pages) but also the presence of difficult cases (e.g.,
large commercial sites with anti-scraping measures or elaborate client-side rendering).

Total
Errors 29736
Excluded 16459
Bad images 19716
Good images 34089
TOT 100000
Table 1. Results of filtering websites based on quality.

Human evaluators compared the processed screenshots to their original online counterparts,
assigning numeric grades and analyzing major differences. The results informed thresholds for
excluding particular frameworks or “unstructured” pages. When extended to 100 000 domains from

Proc. ACM Hum.-Comput. Interact., Vol. 9, No. 4, Article EICS013. Publication date: June 2025.



EICS013:10

DOWNLOAD HTML

<html lang="en-US"><head>
[<meta charset="UTF-8">
<title>My Website Title</title>
</head>

<!-- body section -->

SANITIZE

<html lang="en-US"><head>

<title>My Website Title</title>
</head>
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DOWNLOAD CSS

asvg.,a{
transition: all 0.1s ease

A |
A |

CSS URLS

"https:www.abc.com/451 .¢css"

}
body {
margin: 0;

"https:a.omp.com/2ew74.css"

"https:www.abc.com/3df.css"

MINIMIZE

A |
A |

body {
margin: 0;

STATISTICS

"css_classes": {3,
“css_properties: {}
"css_urls: {),
CLEANSE “htmi_classes" {,
“htmi_tags": §,

"n_html_nodes": {}

<html lang="en-US">
<head>
<title>My Website Title</title>
</head>

FRAMEWORK
DETECTOR

<html lang="en-US"> —> EXTRACT }(_ body {
<head> ECREENSHON margin: 0;

<title>My Website Title</title> }
</head>

Klind

Good Bad

il
1

Fig. 1. The diagram illustrates the step-by-step process of obtaining website code and screenshots. Initially,
the HTML file is downloaded, sanitized, and cleansed. Next, the HTML file is processed by a web framework
detector that filters out files containing specific frameworks. Following this, CSS URLs are extracted from
the HTML file, and the corresponding CSS files are downloaded, minimized, and merged. A detector is then
used to exclude files that have zero CSS classes. Subsequently, the processed HTML and CSS files are used to
extract website screenshots. Finally, the screenshots are labeled based on their quality by a classifier.

the Majestic Million, the pipeline retained approximately 34 000 “good” pages out of 100 000 total
entries; see Table 1 for an overview. Overall, the biggest sources of error were connection and SSL
issues, especially from highly-protected websites, along with malformed CSS.

By systematically refining the pipeline at each stage—from HTML retrieval and sanitization,
through CSS minimization and screenshot classification—our WebUI2Code dataset arrives at a
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Fig. 2. Screenshot of website before and after processing.

relatively clean, structurally representative set of real-world Uls. This multi-tiered filtering strategy
intentionally reduces coverage to guard against visually unrecognizable or fundamentally broken
pages. The final result is a large-scale corpus of HTML/CSS/screenshot triples that are significantly
less noisy than raw scrapes, offering an accessible testbed for design-to-code models and other
interface-centric research.

For a detailed dive into our methodology for acquiring and processing website codes, we direct
readers to Appendix A. Alongside these procedural insights, the appendix showcases various
statistics pertaining to the analyzed websites, offering a perspective on the makeup of our dataset
for readers to gain a clear understanding of our methodological choices and their implementation.

‘ Raw Processed
CSS Classes 1788.03  143.39
CSS Classes Skipped 0 1596.25
CSS Properties 22031  78.42
CSS Properties Skipped | 0 17.83
CSS URLs 8.14 8.11
HTML Classes 238.64  234.75
HTML Tags 35.94 26.86
HTML Nodes 860.75 699.58
Lines CSS 20240.5 2255
Lines HTML 1542.25 996.08

Table 2. Summary of collected statistics on average for each website
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3.2 HTML Bootstrap Synthetic Dataset

The HTML Bootstrap Synthetic Dataset was built using the open-source tool WebGenerator [52].
This tool was developed to create synthetic web-based Uls using the Bootstrap framework. The tool
comes with a variety of generation options, such as probabilities of layouts and sections, screenshot
sizes, and components. These components include commonly used items like Cards, Placeholders,
Tables, and Navigation bars, as well as specialized components like Carousels and Forms. To
populate these elements, the tool utilizes random “lorem ipsum” sentences, simulating how such
Uls might appear in practical applications. Another feature of the tool is its ability to generate a
variety of website styles by selecting random color palettes and modifying the associated CSS file
in the HTML code, allowing for multiple distinct website designs. By manipulating the parameters
of the WebGenerator, the generated websites have a broad range of designs and structures. This
diversity ensures that any model trained on this dataset will be more robust and generalizable.
Moreover, since the dataset uses the Bootstrap framework, it holds relevance in the modern web
development scene. Bootstrap is among the most popular front-end libraries, and its components
are often found on many websites across the Internet. Therefore, it has practical significance and
can be used for research that aims to produce real-world applications. To adapt the tool to our
needs, we introduced a recursive system for screenshot capturing that ensures that all the webpage
elements are contained in the screenshot.

Proident Deserunt Sit Consequat Et Aute

Laboris Veniam Eiusmod Deserunt Non Ea
Laboris Inirure sunt nulla Cupidatat dolor sit Quiipsum sint anim

Sed Labore

Tempor incididunt et

82162

ssssss 139030

Laboris do eu veniam
Eiusmod anim Nostrud qui v ’ [ —

. ’ ==

Laore

Fig. 3. A series of random sampled web interface mock-ups from synthetic dataset demonstrating varied
design patterns. From left to right: a content-focused layout with distinct navigation elements; a grid-based
interface highlighting data presentation; and a minimalistic approach with prominent call-to-action features.

Samples of the website screenshots produced by the WebGenerator are illustrated in Figure 3.
Since these are synthetically generated, they do not contain any real-world information, making
them an ideal dataset for various research applications without concerns about privacy or data usage
rights. The accompanying JSON annotations detailing regions of the GUIs and their corresponding
type provide researchers with a detailed understanding of the structure and design elements used
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in the webpage. Such annotations can aid in supervised machine-learning tasks where precise
labels are required. We introduced modifications in the component annotation procedure. Instead
of providing general labels like ‘header’ or ‘footer’, we identified more fine-grained components
such as text and buttons. This modification facilitated the subsequent conversion to sketches. Once
configured, we generated a dataset comprising 50,000 samples. Each of these samples contains a
PNG image, which is a screenshot of the website, its associated HTML code, and JSON annotations.

3.3 Sketches Synthetic HTML Bootstrap Dataset
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Fig. 4. This flow diagram provides a representation of the multi-stage transformation process starting with
synthetic webpages that contain structured design elements and textual content. Specific components are
extracted and translated into generator annotations. The annotations then serve as a bridge to transform the
structured designs into more abstract, hand-drawn sketches.

To utilize the synthetic dataset for the sketch-to-code challenge, we augmented the generation
function with a method to monitor bounding boxes of fine-grained components, the foundational
design elements. Thanks to the dataset’s synthetic nature, we could easily annotate and retrieve
these bounding boxes without relying on object detection methods. Following this, the identified
components were substituted with their sketched versions from the Synz dataset [49], a com-
prehensive collection of sketched web components. Each component is cropped to the smallest
rectangle that includes the first non-white pixel since we observed that, in the Synz dataset, there
is a redundant whitespace. Furthermore, out of the top 10 components with a similar aspect ratio
to the bounding boxes, one is randomly selected for use. This approach enabled the creation of a
synthetic dataset of web sketches with diverse compositions. As an outcome, this version produced
nearly 10,000 websites (specifically 9,789), which adhered to the same methodology and parameters
as the original synthetic Bootstrap dataset.

3.4 Transformer Architecture for Design-to-Code

Transformer models have reshaped sequence-to-sequence translation tasks by using self-attention to
capture long-range dependencies without the recurrence bottleneck of LSTM-based approaches [55].
For design-to-code translation, a transformer can ingest image patches (visual tokens) as well as
partial code tokens (textual context), generating new tokens that represent the evolving HTML or
DSL output (Figure 5). Below, we briefly summarize our adopted approach, emphasizing practical
details relevant to handling large screenshots and lengthy code sequences.
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Vision Transformer Encoding. Following Pix2Struct [33], the input screenshot is first divided into
equally sized patches (e.g., P X P pixels), each linearly embedded into a latent vector. Stacking
transformer layers over these patch embeddings provides a contextualized representation of the
webpage image, capturing both global layout and local component details. Unlike purely convo-
lutional backbones, this patch-wise approach inherently treats the layout as a sequence of visual
tokens, enabling flexible handling of different aspect ratios and UI complexities.

Multimodal Decoder

i

Next Token
Prediction

Multimodal Decoder

200000000000
preteettrrtt

Visual tokens Language Tokens

Vision J

Encoder

(D=
Multi-Head
Attention

Embedded
Patches

Fig. 5. A visualization of the process to convert web mock-ups into code. On the left, a web mock-up is
segmented into patches, which are processed by Vision Transformers into contextualized encodings. The
center highlights the autoregressive transformer decoder, generating code tokens sequentially based on visual
encodings.

Sliding Window for Long Code Generation. Generating the full HTML of a page often exceeds
common context-length limits for Pix2Struct [33]. We therefore apply a sliding window strategy on
the text side: at each step, the decoder receives (i) the entire set of image embeddings, and (ii) a
truncated history of previously generated tokens (e.g., the last N tokens). It then generates the next
M tokens, shifts the window, and repeats. Empirically, we find this process remains coherent because
the model implicitly learns to continue from where it left off, associating a specific image region
with partial code segments. Although each window does not include the complete code history,
local textual context plus the consistent image encoding suffice to preserve syntactic consistency.
This mechanism effectively sidesteps GPU memory constraints while still enabling reconstruction
of long HTML files. FerretUI-Gemma, in contrast, can accommodate larger textual contexts in
a single forward pass, thus relying less on sliding windows and more on an extensive memory
of the entire code sequence. While this often yields better performance on very large or heavily
annotated web pages, it requires substantially more computational resources. By contrast, our
Pix2Struct-based approach plus sliding-window text decoding strikes a balance, allowing complex
layouts to be handled without exceeding memory limits. Both methods underscore the importance
of accurately modeling image-to-code ratio awareness: the network must align individual parts
of the UI screenshot with semantically corresponding code regions, whether that alignment is
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done incrementally (sliding window) or in a single broad sweep (long context). As shown in our
experiments, both designs can be effective, but practitioners should weigh the trade-off between
hardware resources and the complexity of web Uls under consideration.

4 Experiments

In the subsequent sections, we evaluate the performance of the transformer-based Pix2Struct
architecture across three distinct scenarios: the validation of our real-world WebUI2Code dataset and
synthetic datasets through the model’s performance, and the assessment of Pix2Struct’s effectiveness
for design-to-code generation compared to traditional RNN-based methods on existing benchmarks.
These experiments provide insights into both the potential and limitations of transformer-based
approaches for automated web development, with implications for practical web design applications.

4.1 Datasets

The experiments utilized the following datasets to evaluate the proposed method:

4.1.1 WebUI2Code Dataset: The “WebUI2Code” dataset, described in Section 3.1, emerges from
our scraping pipeline designed to extract website codes and their corresponding screenshots from
the web. Comprising 8,873 samples, each data point in this dataset consists of an HTML file, an
associated CSS file, and a screenshot. Alongside these, the dataset also contains supplementary files,
such as a JSON detailing the metrics from the scraping process, and the unprocessed versions of
the HTML and CSS files. The WebUI2Code dataset was segmented into distinct versions to adapt to
different experimental needs, grounded in the dataset’s size and complexity. By creating subsets of
the data with specific token thresholds, we aim to ensure that the experiments are both manageable
and scalable.

The WebUI2Code-4096 Version has been set with a token threshold of 4,096. This version includes
2,442 samples and has been curated to align with the token constraints applied to other datasets
in parallel studies. Next, the WebUI2Code-8192 Version increases the token threshold to 8,192,
accommodating slightly more intricate samples. Composed of 1,906 samples, the number of usable
samples in this version varies based on additional constraints and preprocessing measures that
may be applied.

The dataset continues to expand with the WebUI2Code-12288 Version, which is characterized by
a token threshold of 12,288. With 2,170 samples, this version showcases a broader range of web
designs, representing the diversity of web content as the token limit grows.

Lastly, the WebUI2Code-16384 Version presents a more comprehensive collection of web designs,
accommodating a token threshold of 16,384. Consisting of 2,355 samples, this version has been
crafted to include websites with more extensive content and structure. Each of these versions
represents a distinct facet of web design, starting from simpler web pages to more content-rich and
complex designs. As the token threshold increases, the datasets not only grow in sample count but
also in the richness and diversity of content, offering a graded approach for model evaluation.

4.1.2  HTML Bootstrap Synthetic Dataset(s): The HTML Bootstrap Synthetic Dataset, as described in
Section 3.2, introduces a more complex ground for testing and evaluation of recent encoder-decoder
architectures. This dataset includes a variety of design elements such as cards, placeholders, tables,
navigation, carousels, forms, and others. Synthetically generated web pages are designed using a
set of predefined templates that mimic real-world web design conventions. These templates are
chosen to cover a wide spectrum of web page layouts. By incorporating such diversity, the Synthetic
Dataset serves as a valuable resource for benchmarking the performance of algorithms intended to
understand and generate web code from visual inputs. The result is a dataset composed of 50,000
samples, each one consisting of a screenshot of the website and its HTML-Bootstrap code. A variant
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of this dataset was created having sketches of website components instead of the rendered elements.
This was done by identifying the area that each real element occupies and substituting it with a
sketched version of it, as described in Section 3.3 The result is a dataset of almost 10.000 websites
(9,789), whose HTML codes are created in the same way and with the same parameters as the
original Synthetic Bootstrap dataset.

4.1.3  Pix2code Dataset: The Pix2Code dataset [7], while relatively simple in its composition, serves
as our baseline for comparison with existing literature. It comprises screenshots of various web and
mobile interfaces, each paired with a Domain Specific Language (DSL) code. This DSL acts as an
intermediary language detailing the UI’s structure and components and facilitating its conversion
into functional codes like HTML or Android XML. This dataset is divided into three categories:
Android, iOS, and Web interfaces. The web section, which is the focus here, contains 1,742 samples. A
distinctive feature of this dataset is its streamlined design. It incorporates only 12 unique structural
elements, and the UI codes primarily consist of these elements and specific arrangement indicators.
Elements such as “small-title”, “text”, and “quadruple” are prevalent, representing nearly half of
all dataset elements. On average, a website’s code in the dataset has between 8 to 56 elements.
Conversion of the DSL codes into HTML led to a variant of the dataset, pairing these HTML codes
with screenshots. A difference arises in text between the original screenshots and the compiled
ones due to the non-deterministic nature of character generation during the compilation process.
An iteration of this dataset was introduced, using ‘lorem ipsum’ as placeholder text, aiming to
maintain consistency. Historically, the Pix2Code dataset has been utilized in various studies, aiding
in the enhancement of certain methodologies. Nevertheless, its potential as a benchmark for future
developments might be reaching its limits.

Pix2Code Dataset HTML Bootstrap Synthetlc Dataset

button

- - "

Fig. 6. Treeplot comparison between the distribution of tags between a) Pix2Code dataset and b) the HTML
Bootstrap Synthetic Dataset. The area of the rectangles represent the distribution of the components in the
dataset.
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4.2 Metrics

Several metrics were utilized to assess a model’s capability in predicting website code from screen-
shots. Textual metrics predominantly relied on the raw versions of responses and predictions,
while some, like structural BLEU and HTML tree edit distance, required complete code compilation
and post-processing. Errors identified during corrections were stored for later analysis, and codes
rendered by browsers were used to derive screenshots for image similarity metrics.
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BLEU. BLEU is a widely-accepted metric for evaluating machine-translated text. It gauges the
overlap of n-grams between generated and reference texts. However, its applicability in code
prediction is limited due to code’s syntactic nature. Given this, a variant termed “structural BLEU”
was introduced, emphasizing structural elements of code by removing non-structural elements. The
Natural Language Toolkit (NLTK) was employed to implement the BLEU score, utilizing a specific
smoothing function to address precision disparities in shorter texts.

Edit Distance. This metric measures the Levenshtein distance between two texts, denoting the
character modifications needed to equate them. For instance, converting “rain” to “shine” neces-
sitates three modifications. The NLTK was again utilized for this metric’s implementation, with
all operations assigned equal costs. A normalized variant, based on the maximum character count
between response and prediction, was also used.

HTML Tree Edit Distance. Driven by the motivation behind “structural BLEU”, a distance metric
emphasizing structural elements was introduced. HTML code is represented as a tree structure, with
the tree edit distance calculated using the Zhang-Shasha algorithm. The algorithm determines the
minimum node modifications to transform one tree into another. The Beautiful Soup parser extracted
HTML nodes, and a Python rendition of the Zhang-Shasha algorithm was utilized. A normalized
version, factoring in the maximum node count between the two trees, was also considered.

Structural Similarity Index (SSIM). Unlike other methods, SSIM highlights pixel inter-dependencies,
offering insights into a visual scene’s structure. The scikit-image version of SSIM was utilized.
A limitation is its requirement for identical image dimensions, necessitating resizing, which can
inadvertently shift image components, affecting the SSIM index.

4.3 Configuration

All experiments were conducted on a dedicated server equipped with four NVIDIA A100 GPUs (each
with 68 GB of VRAM). This setup provided the necessary computational capacity for large-scale
transformer training on both our Pix2Struct and FerretUI-Gemma2B models. For initial testing
and prototyping tasks, we also employed smaller-scale GPU resources (NVIDIA V100s with 32 GB
VRAM or T4s with 16 GB VRAM), striking a balance between computational performance and cost
efficiency.

Pix2Struct. We used a two-phase training schedule. In the first phase, we trained on the synthetic
dataset for 20 epochs with a learning rate of 1x 10™%. In the second phase, the model was fine-tuned
on the WebUI2Code dataset for 10 additional epochs using a learning rate of 1 X 107>, Our batch
size was set to 32, with gradient accumulation over 4 mini-batches to effectively simulate a larger
batch size of 128. We employed Adafactor as our optimizer and used a cosine learning rate schedule,
incorporating a 5-epoch warm-up period. We also applied gradient clipping with a maximum
norm of 1.0 to ensure stable training. For processing high-resolution screenshots, we restricted
image inputs to a maximum of 1024 patches while preserving aspect ratio. As for text decoding,
we used a sliding window strategy on the HTML tokens: each window spanned 1024 tokens, with
a 256-token overlap to give context from previously decoded chunks. Empirically, this approach
alleviated memory constraints and allowed the model to autoregressively piece together longer
code sequences with minimal coherence loss.

FerretUI-GemmaZ2B.. Training Gemma2B followed a similar 4xA100 GPU setup, but with param-
eters specifically adapted to large-scale vision-language instruction tuning. We used a per-GPU
batch size of 2 (for a total of 8 effective across 4 GPUs), gradient accumulation steps of 2, and
ran for 10 epochs at a learning rate of 2 X 107°. To accommodate potential variability in input
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image resolutions, Gemma2B was configured with an “anyres” setting, resizing images to 336x336
while maintaining aspect ratio metadata. The architecture and script parameters (e.g., gradient
checkpointing, half-precision BF16, warm-up ratio of 0.03, and a cosine scheduler) were optimized
for training stability over large instruction-tuned configurations. Although Gemma2B supports
more extensive context in a single forward pass than Pix2Struct, it incurs a higher computational
cost and VRAM footprint due to its larger parameter count.

With both models, we used a 90:10 split for training and testing, reserving a small portion of the
training set (approximately 10% of the total samples) for validation and hyperparameter tuning. We
performed evaluations every 5 epochs for Pix2Struct and at 100-step intervals for Gemma2B, logging
metrics such as cross-entropy loss and BLEU scores. Together, these configurations enabled us to
explore trade-offs between memory consumption, training speed, and performance on real-world
datasets.

5 Results

We benchmarked two different transformer-based approaches—the comparatively smaller Pix2Struct
model and the larger FerretUI-GemmaZ2B—alongside an LSTM-based method (Pix2Code) across
multiple datasets to assess code-generation quality. Table 3 summarizes our findings, reporting
BLEU scores, edit distance measures, and visual appearance metrics (SSIM).

Model/Dataset ‘ BLEU (avg) T ED (avg) | N.ED (avg)] SSIM (avg)?T
LSTM

Pix2Code 0.878 4.925 0.132 0.935
Pix2Struct

Pix2Code 0.983 4.437 0.016 0.942
Synthetic Bootstrap 0.929 443.890 0.081 0.783
Synthetic-Sketches Bootstrap 0.825 1146.678 0.202 0.810
WebUI2Code-4096 0.436 6920.180 0.714 0.547
FerretUI-Gemma2b

Pix2Code 0.995 1.196 0.004 0.939
Synthetic Bootstrap 0.740 1796.909 0.226 0.885
Synthetic-Sketches Bootstrap 0.725 1757.678 0.242 0.879
WebUI2Code-4096 0.397 5790.563 0.487 0.978

Table 3. Comparison of Metrics Across Different Datasets

We begin with the Pix2Code dataset to compare the baseline LSTM architecture against trans-
former approaches. As shown in Table 3, Pix2Struct attains a BLEU score of 0.983, comfortably
surpassing Pix2Code’s 0.878. The normalized edit distance (N.ED) also drops sharply from 0.132
to 0.016, indicating that the transformer’s output is far closer to the reference code. Although the
SSIM values are comparable (0.935 vs. 0.942), Pix2Struct shows a clear advantage in both lexical
(BLEU) and structural (N.ED) comparisons, underscoring the benefits of attention-based models for
design-to-code translation.

On the Synthetic Bootstrap and Synthetic-Sketches datasets, Pix2Struct achieves high BLEU
scores (up to 0.929) while still maintaining reasonable SSIM values (e.g., 0.783). In the case of
sketches—where text is replaced with drawn elements—BLEU values decrease slightly, reflecting
the added complexity of parsing purely visual inputs. Nevertheless, the model continues to capture
structural layout effectively (as indicated by relatively low edit distances and a strong SSIM of
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0.810). These results confirm that attention-based methods can generalize to varied input styles,
from straightforward text elements to purely visual sketches.

We also evaluated FerretUI-Gemmaz2B, a larger vision-language architecture, which offers the
potential for stronger multimodal embeddings at the expense of higher computational demands.
As shown in Table 3, Gemma2B achieves slightly lower BLEU scores on Synthetic Bootstrap (0.740)
than Pix2Struct (0.929), but it notably yields higher SSIM on the same dataset (0.885 vs. 0.783),
suggesting that while token-level agreement may dip, Gemma2B more faithfully reconstructs the
visual layout. On real-world websites from WebUI2Code-4096, both models post BLEU scores around
0.436. However, Gemma2B delivers a much stronger SSIM of 0.985, whereas Pix2Struct remains
at 0.547. This difference highlights Gemma2B’s advantage in replicating the visual appearance of
complex interfaces, although it requires substantially more computational resources.

Despite strong results on synthetic and sketch-based datasets, both transformer approaches face
challenges when tackling the intricate, idiosyncratic HTML structures found in real-world websites.
Even with sliding-window decoding to handle longer HTML sequences, the average BLEU scores
hover around 0.43-0.44. Observed failures include misinterpreting complex CSS usage or generating
inconsistent tag hierarchies when the code extends beyond typical patterns. Notably, FerretUI-
Gemma?2B often compensates for lexical mismatches with strikingly faithful visuals (leading to a
high SSIM), illustrating that different models may trade off textual accuracy for layout fidelity.

Our experiments confirm that transformer-based methods substantially outperform the LSTM
baseline on standard benchmarks (Pix2Code) and exhibit robust performance on synthetic datasets
of diverse complexity. Pix2Struct generally yields higher BLEU scores, whereas FerretUl-Gemma2B
shows better performances in replicating visual appearance (SSIM, ED) but comes with greater
computational cost. Figure 7 shows illustrative samples from each dataset.
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Fig. 7. Random samples from our data (first row) and predictions (second row).
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6 Discussion

Our experimental results reveal three key findings about transformer-based approaches for web
design automation. First, the transformer architectures significantly outperforms traditional RNN-
based methods on established benchmarks, achieving superior accuracy in code generation from
simple UI mockups. This validates the potential of these architectures for the design-to-code task,
aligning with their success in other vision-language domains.

Second, the models demonstrate robust performance on our synthetic datasets, suggesting its
viability for handling varied design representations and components. This capability, particularly
in processing both high-fidelity mockups and sketches, indicates strong potential for supporting
different stages of the design process and enabling practical design support tools.

The third finding emerges from our experiments with real-world websites in the WebUI2Code
dataset, where we observe a significant performance drop. Several factors contribute to this chal-
lenge: the inherent complexity and variability of production websites compared to synthetic data;
the presence of dynamic elements and complex CSS styling that may not be captured in static
screenshots; and the diverse coding practices and optimization techniques used in real-world devel-
opment that create many-to-many relationships between visual appearance and underlying code.
Additionally, real websites often contain intricate responsive design patterns and browser-specific
optimizations that are difficult to infer from single screenshots.

These findings have important implications for the future of automated web development. While
transformer architectures show promise for design support tools and prototyping assistance, the
gap between synthetic and real-world performance suggests that current models might struggle
to rely on real-world datasets for training. However, models trained on synthetic data can still
provide valuable support as augmentation tools for tasks like rapid prototyping, design explo-
ration, and learning assistance where perfect code generation is not required. Furthermore, these
advancements could democratize web development by enabling users with limited coding skills
to transform their designs into functional code, while the sketch-to-code capabilities specifically
enhance rapid prototyping and early-stage design exploration. However, the successful adoption of
these technologies will depend not only on continued improvements in model architectures and
training data but also on their thoughtful integration into existing design workflows and tools to
maximize their benefit for end users.

6.1 Implications for Engineering of Interactive Systems

Transforming Ul designs into functional prototypes through automated code generation holds
significant promise for both novice and expert users of interactive systems. For end users, the
ability to sketch an interface and obtain a functioning model considerably lowers the barriers to
technology creation. Such an approach aligns with the broader goals of user-centered design, where
empowerment and ease of iteration are key. Instead of requiring deep knowledge of implementation
details, users can rapidly test, refine, and validate their ideas in tangible form. This heightened
accessibility could motivate wider participation in UI creation, fostering communities of practice in
which design ideas flow more freely and collaboratively.

Expert developers and designers, conversely, often find themselves constrained by deadlines and
the necessity to evaluate multiple design variants. By introducing a design-to-code pipeline based on
transformer architectures, these professionals can offload the more repetitive or mechanical aspects
of building a prototype. The system’s learned capability to generate coherent code scaffolds from
high-level concepts accelerates the overall workflow. In traditional development cycles, even small
changes to the interface design might demand a cascade of manual coding and layout adjustments;
here, the modifications are handled at the conceptual level, with fine-tuning mechanisms absorbing
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the burden of lower-level coding. Such gains in efficiency promise not only a faster route to polished
prototypes but also a means of focusing human expertise on high-impact creative and user-centered
tasks.

Additionally, these methods create potential pathways for integrating directly into contemporary
design toolchains. In many teams, interactive design is first captured by dedicated software—ranging
from wireframing platforms to more specialized prototyping tools—before moving into code. The
vision of linking these platforms to a robust transformer model means that the end-to-end process
from concept to interactive demonstrator can be significantly shortened. Iterative user testing, an
essential component of human-computer interaction research, also benefits from this streamlined
approach: because prototypes can be generated and adapted at speed, user feedback loops can
be conducted more frequently, and the design refined in near-real time. Ultimately, this fusion
of user-centric design principles with powerful language-modeling techniques stands to reshape
how interactive systems are engineered, democratizing access for newcomers while enhancing
productivity for seasoned professionals.

6.2 Adaptive Learning and Personalization

As Al systems increasingly guide web design and development, they are no longer confined to
static, one-size-fits-all outputs. Instead, emerging approaches can adapt to individual user behavior
patterns, offering personalized code-generation experiences. By analyzing a designer’s past deci-
sions, a modern Al platform can learn to anticipate future preferences and suggest Ul components
or design layouts that align with the user’s evolving style. Such adaptability builds upon advanced
algorithms: reinforcement learning allows a system to iteratively adjust its parameters based on
real-time feedback, while transfer learning enables knowledge acquired in one domain—such as
layout heuristics—to benefit design tasks in another. From a human-computer interaction perspec-
tive, these adaptive Al systems intersect with both End-User Development (EUD) and Adaptive
User Interfaces (AUIs). Through EUD, non-technical individuals can “program” the Al to focus
on certain design constraints or branding elements without formal coding expertise. Meanwhile,
AUIs dynamically reconfigure their interactions based on user feedback, supporting diverse skill
levels and interface preferences. Together, these elements promote inclusivity and foster user
empowerment, ensuring that automated design tools remain responsive to each designer’s creative
direction. Our contribution forms a foundation for these adaptive workflows by demonstrating how
an Al design-to-code system can learn not only broad design patterns, but also context-specific
cues gleaned from repeated user interactions. Over time, the model’s predictions become more
personalized, enabling more efficient prototyping and smoother creative exploration. This vision
for adaptive design assistance advances the field toward intuitive, user-centric methodologies,
ultimately bridging the gap between automated code generation and designer-driven innovation.

7 Limitations

In this section, we discuss the limitations of our study concerning benchmarking choices, dataset
curation methodology, and their implications for the generalizability of our findings.

7.1 Benchmarking Scope and Model Selection

A potential limitation of this study is the comparison scope concerning state-of-the-art proprietary
models (e.g., from OpenAl, Anthropic). Our study prioritized open-weights models to ensure
transparency and reproducibility in benchmarking.

Our primary benchmark, FerretUI, was chosen for its strong performance on specialized UI
grounding tasks relevant to our design-to-code translation objective, including favorable compar-
isons against models like GPT-4V in those specific areas [63]. Large proprietary models are typically
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generalist architectures, whereas our goal is the specialized translation of visual designs into struc-
tured front-end code (HTML/CSS). We hypothesize that the vast scale of these generalist models
may exceed the requirements for this focused task. Therefore, using an open-weights, Ul-focused
model like FerretUI offered a practical, computationally efficient, and openly reproducible baseline
for direct comparison and iteration.

This decision implies that while our results demonstrate significant improvements over previous
methods and establish strong performance within the open-weights domain for this task, direct
claims about performance relative to the absolute state-of-the-art cannot be made based solely on
this work. Our focus remains on advancing reproducible research within the specific constraints of
design-to-code translation.

7.2 Dataset Curation and External Validity

Our methodology involved significant data cleaning and filtering, particularly the removal of
JavaScript and certain web frameworks, which warrants discussion regarding its necessity and
impact.

Rationale for Cleaning: The primary aim of our data cleaning process was to generate datasets
suitable for training models focused on rapid prototyping where front-end visual fidelity is priori-
tized. Including JavaScript introduces considerable complexity, as distinguishing between JS for
essential interactivity (e.g., menus) and JS for complex logic or animations (often unnecessary for
initial prototypes) would require sophisticated filtering mechanisms beyond the scope of this work.
Furthermore, removing scripts and sanitizing HTML/CSS significantly reduces the token count,
decreasing the memory and computational resources required for training and inference, allowing
us to balance dataset quality (focusing on visually static structure) with resource efficiency.

Impact of Filtering: The removal of script nodes and the filtering of websites based on frame-
works like React, Gatsby, and Nuxt impacts the dataset’s representativeness of the entire web. This
filtering inherently excludes websites heavily reliant on client-side rendering for their layout and
dynamic features. Consequently, our WebUI2Code dataset, while cleaned for structural analysis,
may underrepresent complex, dynamic web applications, introducing a potential bias.

External Validity: These curation choices limit the external validity and generalizability of
models trained solely on this processed data, especially concerning highly dynamic or framework-
dependent websites. The claim that the dataset is “structurally representative” should be understood
within the context of these filtering steps — it represents a set of real-world Uls amenable to static
analysis after cleaning, rather than the full spectrum of modern web development practices. Future
work could explore methods to incorporate or dynamically handle JavaScript and framework-
specific code to broaden applicability. We also acknowledge the inherent tension between the
rendered HTML output we capture and the source code (often using toolkits) a developer might
write; our current approach focuses on the former.

8 Conclusion

Our research contributes to advancing web development through several contributions. The in-
troduction of a refined WebUI2Code dataset, especially its collection pipeline, provides a strong
foundation for mock-ups to code solutions, while our synthetic datasets enable the exploration
of sketch-to-code systems that lower the entry barrier for individuals without technical expertise.
Our evaluation of two recent transformer-based models demonstrates improvement on traditional
benchmarks and effective results on our synthetic data, aligning with current Al trends and suggest-
ing a future where complex and varied web designs can be translated into functional websites with
greater precision. Looking ahead, the focus will be on collecting even larger datasets and large-scale
training followed by rigorous experimentation with designers and real users. We envision systems
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that can learn and adapt to individual design styles and workflows. These tools could leverage
techniques like reinforcement learning to adjust to user feedback and transfer learning to handle
diverse design scenarios, creating more personalized and responsive design experiences. By align-
ing these technological advances with practical workflows and requirements, we will enable the
creation of accurate and user-oriented design augmentation tools. Our contributions aim towards a
web development aligned with human-centric principles of design and creativity, with the final
goal of augmenting human creativity and productivity through Al systems.
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A Web Scraping Method

Our methodology for acquiring and processing website HTML code involves retrieval using Sele-
nium with Google Chrome, sanitization to remove undesirable code and fix issues, and formatting
to eliminate comments and inconsistencies. To obtain CSS code, we locate CSS file links in the
HTML, process them with a custom parser built using tinycss22, optimize by excluding irrelevant
rules and properties, consolidate into a single file, and update HTML references. Screenshots are
captured using Selenium. A screenshot classifier filters the images, keeping only those preserving
the page structure after HTML/CSS reduction, ensuring dataset quality for downstream machine
learning. The following subsections detail our scraping method. The process of obtaining the HTML
code of a website involves three distinct stages. Firstly, retrieving the HTML code rendered by
the browser, secondly sanitizing the code, and finally, cleansing and formatting the sanitized code
appropriately. With the term “sanitize”, we refer to the process of removing unnecessary code lines,
and also fixing code syntactical errors, like tags not closed or in the wrong position. “Cleansing”

Zhttps://pypi.org/project/tinycss2/
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and “formatting” include the removal of comments, multiple white spaces or tabs, and adjusting
the structure and layout of the code, making it uniform and more readable. This involves fixing
the indentation, adopting a consistent use of quotes (single or double quotes), and aligning tag
attributes. Additionally, an HTML parser is used to extract statistics such as the number of HTML
nodes and the number of different HTML tags and classes.

A.0.1 Retrieve website’s HTML code. For the first step, Selenium is used, an open-source automated
testing tool commonly used for web application testing. Selenium enables the automation of the
process of interacting with a website and retrieving its HTML code. The chosen browser is Google
Chrome, with a 1280x1024 window size.

A.0.2 Code sanitizing. To sanitize the code, a sanitize-html tool is used, it is built on top of
htmlparser2 and effectively removes undesirable HTML code by eliminating tags specified in a
deny list. It also corrects poorly closed tags and allows tag and attribute substitution.

Tags that do not affect website structure, are associated with external resources, or impact
only the dynamic behavior of the websites are excluded, like <script>, <meta>, <noscript>, <svg>,
<path>, and <iframe>.

Additionally, attribute substitutions are performed for tags including <img>, <href>, <picture>,
<a>, <source>, <link>, <div>, and <figure>. Specifically, “data-src” and “data-lazy-src” attributes
are replaced with “src”, and “data-srcset” and “data-lazy-srcset” are substituted with “srcset”. All
links to images are also replaced with a link to the default image within the project.

These HTML attributes are normally replaced asynchronously and are used to speed up website
rendering and enhance user experience. Since in our scenario this is not needed, and images are
substituted with a default one, we can substitute them during this phase. The HTML tags remain
unchanged, while the attribute name is replaced according to the substitutions previously listed.
The attribute value is left unaltered, except for the link to the default image change.

This enables each website to have a default image that can be used in place of the original images.
This resolves the issue of resource downloads for each website. It will also provide a common
appearance for images, facilitating their recognition in subsequent machine-learning tasks.

Another transformation used is the replacement of all <ol> tags with <ul> tags to minimize tag
variability when there are no apparent structural differences.

A.0.3 Code cleansing and formatting. For the last step, a tool called clean-html is used. It cleans
up HTML code, by removing comments, random line breaks, and mixed tabs. It also formats and
indents code correctly. The first processing step is responsible for a major reduction in the line
number through filters and transformations. In the final step, empty lines are removed. Each
non-empty line can potentially generate one or more lines due to formatting, because it distributes
one HTML tag per line, with a few exceptions.

A.1 CSS code

The methodology for obtaining CSS code starts with getting all the CSS related to the website.
Each of those is then processed individually, cleansed, and minimized. In the end, the CSS files are
merged, and their references are updated.

A.1.1  Get the CSS files related to the HTML file. The first step consists of searching for CSS file

references in the HTML file obtained in the previous phase. Each file is then downloaded and
processed.
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A.1.2  CSS file processing. To process each CSS file, a custom-made parser was used. This parser is
built on top of tinycss2, which is a low-level CSS parser and generator capable of processing CSS
strings and returning CSS tokens and objects.

This allows for identifying all CSS components and recognizing CSS patterns such as qualified
rules or at-rules. Each rule, based on the category is decomposed into different parts and recursively
analyzed.

A.1.3  CSS file minimization. To minimize CSS code, the general idea is to remove all code that
does not impact the website’s appearance.

In fact, it is common practice to put all the style rules for all pages of a website inside one or
more common CSS files, avoiding code duplication. However, in our scenario, we are interested
only in the rules that affect the page rendered by the previously gathered HTML file. This means
that, in many cases, CSS files can be reduced by a lot.

An even bigger reduction is possible when references to big CSS files from frameworks or libraries
are present. This is because, usually, only a small portion of their classes are used. Some examples
of those frameworks are Bootstrap, Tailwind CSS, and Bulma.

The strategy is to exclude the rules specified for tags or classes, which are not used in the HTML
file. For this reason, a complete list of all the tags and classes used in the HTML file is extracted.

Moreover, CSS properties that have a small impact on the appearance of the resulting website
screenshot are excluded too. These properties include those related to the website’s dynamic
behavior, and style properties that do not bring structural changes. In addition, browser-specific
CSS properties that are valid for other browsers but not for the one used in the experiment are
excluded too.

Table 4 shows the lists of excluded properties, divided by type. Only a smaller portion of the
Mozilla Firefox and Internet Explorer properties is shown for readability. The full list can be viewed
in the code repository.

Experimental results show that the aforementioned measures result in an average size reduction
of the number of lines in the output CSS file by a factor of 10.

A.1.4  Merge of CSS files. To simplify matters, a single CSS file is created by combining all the
processed CSS files. Any references to CSS files in the HTML code are updated to point to this
specific local file.

A.2 Screenshot extraction

To capture website screenshots Selenium is used, with the same setup as when obtaining HTML
code. Two possibilities exist: one connects the website URL and captures the screenshot, while the
other (the one used in our experiments) loads the local HTML file and captures the screenshot,
producing a website image representative of the processed HTML and CSS files.

Another useful feature is added to close the “accept cookies” pop-ups, which are common
on many websites and usually occupy a significant portion of the resulting screenshot. This is
particularly important in the first scenario, as in the second one, numerous pop-ups are eliminated
due to removing during the sanitizing process of the <script> tag that typically contains them. This
functionality simply attempts to locate buttons with common words to dismiss the popups, such as
“T Accept”, “Ok”, and other variants and clicks on them.

A.3 Collection of statistics

Various statistics are extracted for each website with the purpose of monitoring certain metrics
that hold potential significance for the development of subsequent machine learning models or
other relevant tasks. Statistics are saved in JSON files, one per website.
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type properties
dynamic transition, transition-timing-function,
transition-delay, transition-duration,
transition-property, animation-delay,
animation, animation-direction,
animation-duration, animation-fill-mode,
animation-iteration-count, animation-name,
animation-play-state, animation-timing-function
various font-style, text-transform,
letter-spacing, word-spacing,
line-height, text-shadow,
box-shadow, background-image,
background-repeat, background-position,
hyphens, border-radius,
border-style, border-color,
order-width, -webkit-font-smoothing
Mozilla Firefox | -moz-appearance, -moz-border-right-colors,
-moz-binding, -moz-border-bottom-colors,
-moz-box-align, -moz-border-left-colors,
-moz-box-flex, -moz-border-top-colors,
-moz-box-direction, -moz-box-shadow,
-moz-box-ordinal-group, -moz-box-orient, ...
Internet Explorer | -ms-accelerator, -ms-behavior,
-ms-block-progression, -ms-content-zooming,
-ms-filter, -ms-flex,
-ms-flex-align, -ms-flex-direction,
-ms-flex-item-align, -ms-flex-line-pack,
-ms-flex-order, -ms-flex-pack,
-ms-flex-wrap, -ms-grid-column, ...
Table 4. List of excluded CSS properties divided by type.

The dimensions of the recorded screenshot, including its width and height, are preserved alongside
the count of lines present within the CSS and HTML files.

The number of nodes, CSS URLs, distinct CSS classes, and tags is extracted from the HTML files.
Moreover, CSS files provide information about CSS classes and properties, as well as those excluded
during minimization.

Statistics are collected also for the “raw” HTML and CSS files, those without the sanitizing and
minimization process, to evaluate the impact of such procedures.

A4 Web Scraping Quality Assessment

We perform a series of three initial experiments to assess the performance of our web scraping
method on different types of data. The results of these experiments are then human evaluated and
used to train the classifier, which is subsequently utilized in the final data collection process:

A.4.1  Evaluation over blog websites. To validate the process and evaluate the script’s behavior,
an initial experiment was performed on a limited number of websites. A set of blog websites was
identified as suitable for this purpose, given their relative simplicity and standard appearance.
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Specifically, a list of 51 popular blog websites was obtained from the website https://passionwp.
com/most-popular-blogs/.

Subsequently, each resulting website screenshot was reviewed and compared to the original web-
site’s appearance, without processing or minimization. Based on this comparison, a comprehensive
list of observations was recorded, considering factors such as the degree of similarity between the
processed screenshot and the original website, the identification of website frameworks, and the
nature of the differences between the two versions.

The differences that are typical effects of HTML processing, such as image substitution, are not
considered part of the abnormal differences.

A grade was given to each website from 0 to 5:

e 5 to websites almost identical to the original, and with minor differences

e 4 to websites similar to the original, with slight differences, or with differences in small parts
of the website (ex: a list is different in a part of the footer)

3 to websites with a structure comparable to the original, but with some differences

2 to websites with large portions of the screenshot that do not reflect the original website, or
with major differences

1 to empty websites, websites without styles, and websites completely different from the
original ones

0 to websites with errors, that did not produce a final screenshot.

A.4.2  Framework detector. Based on the analysis of the first experiment, it was observed that some
critical results that received a grade of 1 exhibited the presence of a web framework. As a result,
additional system functionality was introduced to detect web frameworks. This is achieved by
examining certain keywords and attributes in the website’s HTML code. The web frameworks that
are considered include React, Gatsby, Next, Nuxt, Backbone, Vue, Angular, and Ember. Table 5
shows the keywords searched for each framework.

By comparing the previously assigned grades of websites with the detected frameworks, it was
found that only some of these frameworks consistently produced poor results, while three of them
(Vue, Angular, Ember) did not. Therefore, if a framework from the remaining five (React, Gatsby,
Next, Nuxt, Backbone) is present, the website is marked as “excluded”.

A.4.3 Results. Upon removing the “excluded” websites (grade -1), only a few websites had bad
results (grades 1, 2). Overall, 62.75% of websites had good results (grades 3, 4, 5).

After calculating the statistics on the good results, we can see some interesting trends, like the
average reduction of lines of CSS code by over 90%, and a reduction of HTML lines by more than
35%.

A.4.4  Majestic million list. A second experiment was conducted on a portion of a larger list of
websites.

The list used was Majestic Million, a list of a million website domains with the most referred
subnets. The initial 100 websites were analyzed in this experiment.

The results of this experiment are worse than the first one, as was expected by introducing all
kinds of websites, some more complicated than blogs. In particular, there is a significant increase in
the number of websites with errors from 1 to 10, and websites with very low grades (white pages,
websites without CSS).

The reason could be that, since these websites are more popular and drive more traffic, they have
additional measures to prevent web scraping. In addition, they are more sophisticated and complex
overall.
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Framework

Keywords

React

P k0N

data-reactid=
React.createElement’
ReactDOM.render’

Gatsby

gatsby-
_gatsby
GATSBY_*_POST

Next

_app.js
_document.js
_error.js
_documentSetup
_appContent
__NEXT_DATA__

Nuxt

nuxt-
__NUXT__js
fetch__js
nuxt.js

Backbone

backbone—
backbone.js
backbone.min.js

Vue

vue—
Vue.js
Vue.min.js

Angular

ng-
angular.js
angular.min.js

Ember

ember-
ember.js
ember.min.js

Table 5. Keywords used to detect the presence of the different web frameworks.

Grades | Total
0 1
-1 14
1 0
2
3 7
4 9
5 16
total 51

Table 6. Websites grades obtained during first experiment.
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Averages Raw | Processed

css classes 1788.03 143.39

css classes skipped 0 1596.25
css properties 220.31 78.42
css properties skipped 0 17.83
css urls 8.14 8.11

html classes 238.64 234.75
html tags 35.94 26.86

n html nodes 860.75 699.58
n lines css 20240.5 2255

n lines html 1542.25 996.08

Table 7. Websites statistics obtained during first experiment.

Grades | Total
0 10
-1 35
1 29
2 6
3
4 9
5 7
total 100

Table 8. Websites grades obtained over Majestic million.

A.4.5  Evaluation over .blog websites from Majestic million list. At this point, the idea was to test
the tool on another portion of the Majestic Million list. This was the first 100 websites with the
.blog top-level domain. This was done to extract from the same list a sublist of easier websites, more
similar to the ones used in the first experiment.

The outcomes demonstrate a marked improvement compared to the second experiment and are
more in line with the first. The percentage of good website screenshots (grade 3, 4, 5) is slightly
higher (72% versus 64.29%), but also in this case, the number of bad results, not excluded by the
system’s filters is not negligible (12%).

Grades | Total
0 7
-1 9
1 9
2 3
3 8
4 29
5 35
total 100

Table 9. Websites grades obtained from .blog websites.
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A.5 Screenshot classifier

Initial experiments indicated that the system performed better on simpler websites. However, the
difficulty in obtaining large lists of simple websites led us to examine the problem from a different
perspective.

Since most of the poor results are easily recognizable by a human and present common patterns,
such as blank white pages or unstructured pages lacking CSS, the idea was to train a convolutional
neural network to classify the results as either “good” or “bad”, and filter out the second ones,
similarly to the websites excluded during the previous phases by the framework detector and the
detection of websites with zero CSS classes.

The dataset on which we trained the classifier is composed of previous experiments’ results,
which have been manually classified as “good” or “bad” and some of them have been removed since
they are less easily identifiable than others. It contains 219 images, of which 112 are “good” and
107 are “bad”. The dataset is almost balanced, with the first class containing approximately 51.1%.

75% of the dataset is used for training and validation, while 25% is for testing. The training-to-
validation split is also 75:25.

Some samples from the dataset are shown in Figure 8

good good good

bad bad

Fig. 8. Samples from the dataset of the screenshot classifier.

A.5.1 Model. The model used is based on the ResNet50 architecture, a widely adopted neural
network for image classification.

It is pre-trained on the ImageNet dataset, which contains millions of labeled images across
thousands of classes. By leveraging these pre-trained features, the network is able to learn from a
small amount of data and achieves high classification accuracy on new images.
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The top layer of the ResNet50 model, responsible for the final classification task, is removed. New
layers are added on top to fine-tune it for our specific classification task. Additionally, the model
includes a dropout layer to reduce overfitting, a random-cropping layer for data augmentation, and
layers to resize and scale the images.

The model is trained to classify images into “good” and “bad” using binary cross-entropy loss
function and the Adam optimizer.

A.5.2  Training and testing. Several metrics were considered during the training of the model,
namely loss, accuracy, precision, recall, and AUC. An “early stopping” strategy was used to avoid
overfitting, monitoring the validation loss with a patience value set to 10 epochs. The model was
trained for 30 epochs and reached a training accuracy of 83.74% and a validation accuracy of 87.70%.

As a comparison, the model without pre-training on ImageNet reached a training accuracy of
52.03%, and a validation accuracy of 51.22%, always predicting the second class.

This shows the inability of the model to learn from the small data at its disposal. It also shows
the impact of transfer learning in a scenario with a scarcity of training data.

During testing, the model reached an accuracy of 81.82%, a precision of 80.00%, a recall of 85.71%,
and an AUC of 85.19%. Table 10 and Figure 9 show the classifier results during training, validation,
and testing and the confusion matrix on the test set.

Training | Validation | Testing
Loss 0.332 0.354 0.703
Accuracy 0.837 0.878 0.818
Precision 0.812 0.864 0.800
Recall 0.889 0.905 0.857
AUC 0.935 0.946 0.852

Table 10. Screenshot classifier performance metrics.

Confusion matrix

bad_images

12.5

10.0
good_images 4 24

7.5

5.0

bad_images good_images
Predicted label

True label

Fig. 9. Confusion matrix illustrating the performance of the screenshot classifier on the test set by displaying
the true and predicted classifications.

A new experiment was performed to see the results after the screenshot classifier introduction.
The list of websites analyzed comes from the second one hundred websites at the top of the Majestic
Million [1] lList.
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By merging the previous grades 3:5 into the class “good”, and the grades 1:2 into the class “bad”,
it is possible to compare the results with the previous experiments.

Blogs (1) | MM 1-100 (2) | MM.blog (3) | MM 101-200 (4)
Errors 1 10 7 20
Excluded 14 35 9 26
Bad images 4 35 12 25
Good images 32 20 72 29
TOT 51 100 100 100

Table 11. Table comparing results across different experiments.

Table 11 presents a comparison of the four experiments’ outcomes.

The columns of the table correspondingly exhibit the results of the initial experiment performed
on blog websites, the second experiment conducted on the first 100 websites listed in the Majestic
Million [1] ranking, the third executed on 100 websites enlisted in the Majestic Million ranking
with .blog domain, and, finally, the results obtained from the current experiment.

The results of this experiment are similar to the human-classified websites on the top one hundred
websites of the Majestic Million list. Specifically, the proportion of websites retained (not excluded
and without errors) was 54% (compared to 55% of human evaluation), with a higher proportion
being classified as “good”, i.e. 53.70% (versus 36.36% of human evaluation).

Again, the number of websites with errors is high, and the motivations are the same ones
mentioned in the previous example.

Overall, the final result of this early experiment on a small list is that almost 30% of websites
analyzed produce results classified as “good”.

A.6  WebUIDataset Collection

The final scraping was conducted on a larger list, containing the top 100000 websites from the
Majestic Million list. It was performed on the Politecnico di Torino Big Data Cluster, on a BigDataLab
Education environment, with 30 GB of RAM reserved.

It lasted for about 3 weeks, and the 100000 websites were divided into 10 batches of 10000 each.
The training of the screenshot classifier took approximately 10 minutes, while the main script
ran for around 50 hours for each batch. The other minor scripts consumed a negligible amount of
time, while the classification of the non-excluded websites took about 45 minutes for each batch of
websites.

The experiment generated about 100GB of files, with the final dataset containing files of websites
classified as good taking up 54GB of space.

The results showed similar numbers to the previous experiment in terms of the percentage of the
“included” website. The percentage of errors increased from 20% to 29.74%, while the percentage of
excluded websites dropped from 26% to 16.46%, and these two experiments somehow balanced the
total number of not included websites at around 46%. From the included websites the percentage of
them classified as “good” increased from 52.70% to 63.36%.

A.6.1 Statistics. The number of CSS files found in a random website from the analyzed list repro-
duces a decreasing exponential function, as shown in Figure 10. The average is around 7 files per
website, and only less than 10% of the websites have more than 15 CSS files.

The average number of nodes in the processed HTML files is 1061.61%, with an average reduction
of 11.34% during cleansing and sanitizing.
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Averages Raw Processed

css classes 1965.54 139.92
css classes skipped 0 1775
css properties 172.55 67.34
css properties skipped 0 16.56
css urls 7.09 7.07

html classes 224.31 220.69
html tags 34.28 27.44

n html nodes 1197.39 1061.61

n lines css 23037.31 2264.85

n lines HTML 1794.84 1478.43

Table 12. Statistics on the extracted codes from the final experiment.

15000

10000

5000

Number of websites

0 [T

W B M e D D M o— DD MM B Mo DD D M
- = N MMM T T T DD WD WD @ om0 - D

Number of CSS files

EICS013:35

Fig. 10. Distribution illustrating the number of CSS files associated with various websites.
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MNumber of HTML nodes
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Fig. 11. Distribution illustrating the number of HTML nodes associated with various websites.

The reduction of the number of lines in the CSS files before and after processing is around an
order of 10, and it is quite consistent from small files to large files, as shown in Figure 12. The

average length before processing is 23037.31 lines, and after processing is 2264.85 lines.
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Number of CS5 lines
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Fig. 12. Comparative distributions (on a logarithmic scale) illustrating the number of lines in CSS files before
and after processing, emphasizing the efficiency and impact of the processing step.

A.6.2  Errors. The experiment showed a significant percentage of websites that generated errors,
about 29%. Further analysis was done to understand the causes of these errors and their nature.

Table 13 shows all the most common errors encountered during the experiment, with a percentage
of occurrence greater than 0.5%.

The majority are related to connection issues or SSL certificates. They occur at the beginning of
the experiment, during the connection to the target website to retrieve HTML code. These issues
are often caused by firewalls or networking rules that prevent automatic tools from connecting.

The error “List index out of range” occurs during the CSS extraction phase, and is usually caused
by using incorrect CSS syntax or invalid characters.

Two errors occurred during screenshot extraction. The first error with the message “Element
click intercepted” is raised during the click on Cookies pop-ups, but it is not a blocking error, so
the process continues after handling the error.

The second error is “Unable to capture screenshot”, which can be due to various issues such as
browser incompatibility, network issues, insufficient permissions, or timing issues.

Overall, many of the previous errors are inevitable mainly due to the nature of the experiment
setup and the target websites that populate the target list. Some of these websites may be inaccessible
to the public, while others may have sophisticated security defenses to avoid suspicious traffic.
However, some other errors could be investigated more accurately and handled, like those related
to CSS files.
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Percentage Type Message
16.69% ConnectTimeoutError Connection timed out
13.29% SSLError <hostname> does not match
<allowed hostnames>
13.17% NewConnectionError | No address associated with hostname
8.14% List index out of range
7.38% NewConnectionError Connection refused
5.29% Read timed out.
5.05% Timed out receiving message
from renderer
3.92% SSLError Self signed certificate
3.80% SSLError Certificate has expired
3.79% SSLError Unable to get local issuer certificate
3.53% Element click intercepted
2.90% NewConnectionError | Temporary failure in name resolution
2.67% UnknownError Unable to capture screenshot
2.49% NewConnectionError Name or service not known
1.59% ConnectionResetError Connection reset by peer
0.98% OSError Connection aborted
0.78% SSLError Wrong version number
0.69% SSLError Alert internal error
0.66% NewConnectionError No route to host
0.65% Remote end closed connection
without response

0.50% SSLError Alert handshake failure

Table 13. Most common errors encountered during scraping of websites.
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