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Abstract
Visual programming tools have recently been introduced to enable
Deep Learning (DL) development without the need for expertise
in traditional programming languages and frameworks. However,
these tools often exhibit limitations in scalability for complex ar-
chitectures and lack real-time debugging capabilities. This paper
introduces DeepFlow, a flow-based visual programming tool (VPT)
designed to address these challenges by leveraging the inherently vi-
sual nature of DL models as sequences of learnable functions. Deep-
Flow incorporates hierarchical abstraction mechanisms through
“supernodes” to support model scalability, which is crucial for mod-
ern, complex architectures. Additionally, it introduces interactive
debugging in the model design phase, allowing developers to vali-
date network architectures before execution. We conducted a user
study with 16 DL developers, involving typical DL model design
tasks. We assessed DeepFlow using quantitative usability metrics,
and post-task interviews to evaluate user perceptions and workflow
integration across different expertise levels. Results demonstrated
high usability and user satisfaction, and highlighted DeepFlow’s
effectiveness for rapid model iteration and as a learning aid for
complex DL architectures, while also identifying areas for improve-
ment.
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1 Introduction
Rapid progress in Deep Learning (DL) has catalyzed significant
advances across numerous fields, including image recognition, nat-
ural language processing, autonomous driving, medical diagnosis,
and drug discovery. As DL applications expand beyond traditional
computer science domains into practical, domain-specific imple-
mentations, there is a growing need to make these technologies
accessible to a broader audience of domain experts. Empowering
these professionals to directly engage with DL model development
can accelerate research and increase productivity in their special-
ized areas. However, current popular frameworks for DL devel-
opment — such as PyTorch [37], TensorFlow [1], and Keras [9] —
rely on programming languages. This reliance poses significant
challenges [42] for non-computer science experts attempting to
leverage DL methods. Even within the computer science commu-
nity, there is a common perception that existing DL frameworks lack
essential features for quicker and more efficient implementation
and prototyping [42].

Deep learning architectures are inherently structured as unidirec-
tional flows of information through sequential layers of abstraction.
This characteristic naturally lends itself to visual representations,
which are commonly found in DL research publications and ed-
ucational materials. Recognizing that these architectures can be
effectively visualized as sequences of interconnected nodes with
specific properties, it is straightforward to explore the possibility
that neural networks can be constructed and programmed in a vi-
sual manner. Supporting this assumption, in a quantitative survey
among 113 software engineers and researchers from various back-
grounds and experiences, Sankaran et al. reported that 72% of the
respondents suggested that a visual programming tool would be
useful to speed up the overall DL development process [42].

In traditional software development, visual programming is a
paradigm that allows users to create programs by manipulating
graphical elements rather than writing code textually. Researchers
have made several attempts to introduce visual programming tools
(VPTs) that enable an intuitive, “no-code” approach to designing
deep learning models. DeepVisual [54], for example, is a PyCharm
plugin enabling users to design neural networks through a drag-
and-drop interface and supports bidirectional conversion between
visual representations and Keras code. DARVIZ [42] introduced
an abstract representation called Neural Language Definition Stan-
dard (NLDS) to enable interoperability across different deep learn-
ing frameworks. The authors of DL-IDE [47] expanded on these
concepts and demonstrated that the development time and task
accuracy using visual programming were better or comparable to
coding. The authors also showed that DL-IDE caters to all users
irrespective of their prior expertise in deep learning, with a more
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marked advantage for novice users. These contributions, while valu-
able, exhibit two key limitations when considered in the context of
current AI advancements: scalability of model architectures and
interactive debugging. The scalability of model architectures is
crucial as state-of-the-art networks can contain hundreds of layers
with intricate substructures [6]. Existing tools lack hierarchical ab-
straction capabilities, making it difficult to build and visualize large,
complex networks effectively. Interactive debugging during the
design phase is another critical limitation of existing tools. While
some offer basic checks, none provide instantaneous feedback on
the validity and potential issues of the designed architecture. Im-
plementing real-time validation would allow users to identify and
resolve problems earlier in the development process, significantly
enhancing the user experience and preventing errors during execu-
tion. In addition, while the authors of DL-IDE [47] demonstrated
that time reduction when using VPTs compared to traditional cod-
ing was consistent across different levels of user expertise, they
lacked a comprehensive qualitative assessment of how such tools
are perceived by users with varying levels of expertise. Building
upon prior contributions, we aim to address the identified gaps
and introduce a system that aligns with current deep learning ad-
vancements. We introduce DeepFlow, a web-based VPT for Deep
Learning Developers that shows the following contributions:

(1) To allow developers to design large and complex networks,
we enable users to add, connect, and merge nodes into more
sophisticated architectures. We introduce the concept of su-
pernodes, which are composite nodes that can encapsulate
multiple computational nodes or other supernodes, enhanc-
ing modularity and reusability in neural network design.

(2) We introduce interactive debugging for users to validate their
architectures prior to training. This network verification
feature identifies and highlights erroneous nodes in the User
Interface, providing immediate visual feedback to users and
guiding them in resolving errors before initiating the training
process.

(3) We provide a qualitative assessment of user experiences
with DeepFlow across different expertise levels. This evalu-
ation explores the trade-offs between the flexibility of tra-
ditional coding and the accessibility of visual programming
approaches for deep learning, with a particular focus on
workflow integration for experienced users. By addressing
this gap, we offer insights into how DeepFlow is perceived
and utilized by a diverse user base, contributing to a more
precise understanding of VPTs’ role in the deep learning
development ecosystem.

To align our discussion with existing contributions, DeepFlow
includes the main functionalities of previous VPTs such as a wide
range of PyTorch functions as nodes and export of created models
in various formats (PyTorch, ONNX, JSON). We evaluated Deep-
Flow through a user study with 16 participants, including both
Deep Learning novices and experienced practitioners. Participants
were given a series of typical DL tasks to complete using DeepFlow.
We assessed usability using the System Usability Scale (SUS) [5]
and task difficulty using Single Ease Questions (SEQ) [43] to com-
pare DeepFlow with coding. Results showed high usability scores

and significantly lower perceived difficulty compared to coding ap-
proaches. Additionally, we gathered qualitative feedback through
post-task interviews. Users found DeepFlow intuitive, praising its
visual approach for rapid DL model prototyping and its value as an
educational tool. Participants highlighted how the visual represen-
tation enhanced understanding of complex deep learning architec-
tures. The analysis of user feedback also identified future directions
for improvement, discussed at the end of the paper.

2 Related Work
Visual programming languages (VPLs) have emerged as powerful
tools for democratizing access to complex computational processes,
including machine learning (ML) and neural network design. These
languages enable users to create programs by manipulating graphi-
cal elements rather than writing code textually, lowering the barrier
to entry for those without extensive programming backgrounds. In
ML applications, VPLs usually include nodes for data preprocessing
and standard ML functions such as Principal Component Analysis
(PCA), clustering, and classification algorithms. These tools focus
on providing a range of components for traditional ML tasks, em-
phasizing data manipulation and classical algorithms. On the other
hand, DL VPLs allow for the design of neural network architectures,
enabling users to construct and visualize complex deep learning
models.

The development of VPLs in ML applications has been driven
by the need for user-friendly tools that can keep up with the in-
creasing complexity of AI-based systems [28]. These tools mainly
use graphical user interfaces (GUIs) to simplify the creation and
manipulation of ML models [2, 33, 53]. A predominant trend in
VPL-based ML tools is the use of flow-based programming lan-
guages. These languages represent computational processes as
directed graphs, making complex data processing more intuitive
through visual nodes and arcs [32]. Examples include Orange [10],
a comprehensive data mining toolbox, and Goldenberry [16, 41],
an extension of Orange for evolutionary algorithms. Block-based
languages represent another significant category in VPL-based ML
tools. These languages allow users to construct programs using
drag-and-drop code blocks, reducing syntax errors and focusing
on conceptual understanding [38]. Tools like Scratch and its im-
plementations [35, 36, 38, 40, 45] have been widely used in edu-
cational settings to introduce ML concepts to novices. Other ex-
amples include ML Blocks [53] for creating TinyML models and
Milo [39] for data science education. The application of VPL-based
ML tools extends beyond educational settings, in industry, tools
like PaddlePaddle [3] empower companies to train employees in
both ML processes and business applications, aFlux [31] enables
graphical Spark programming for IoT mashup tools. In healthcare,
KNIME [51], RapidMiner [4], and Workflow Designer [24] have
been used to develop ML-based systems for predicting hospital ad-
missions, enhancing healthcare decisions, and designing EEG signal
processing pipelines. Several VPL-based tools cater to specific ML
tasks or domains. Visual Apriori [30] provides a visual interface for
frequent itemset generation. Rapsai [12, 13] aims to accelerate ML
prototyping of multimedia applications while incorporating fea-
tures for model interpretability. Node-RED [29] has been used for
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IoT beehive monitoring with ML-based anomaly detection. OneLa-
beler [56] offers a flexible system for building data labeling tools.
Marcelle [15] allows for composing interactive ML workflows and
interfaces. CO-ML [50] focus on collaborative ML model building,
involving non-expert users in the process. General-purposeML plat-
forms with visual programming capabilities include WEKA [21], a
comprehensive ML workbench; Yale [34] for rapid prototyping of
complex data mining tasks; and Lemonade [11], a scalable Spark-
based platform for data analytics. Tools like DeepGraph [22] focus
on visualizing and understanding DL models, while Prompt Sap-
per [8] leverages large language models for building AI chains. The
development of VPL-based tools for ML has seen innovations also
in interaction modalities [50]. While drag-and-drop remains the pri-
marymode of interaction for most tools [28], some researchers have
explored alternative approaches. For instance, Mix & Match [23]
integrates GUIs with tangible tokens, allowing users to manipulate
physical objects to design ML-based systems. Similarly, Gest [19]
employs sensors to engage children with ML concepts through
gesture recognition. In the realm of deep learning (DL), which in-
volves designing complex neural network architectures, several
VPL-based tools have emerged to simplify the process. DeepVi-
sual [55] provides a visual programming environment specifically
for DL systems, enabling users to design neural networks through
a drag-and-drop interface and supports bidirectional conversion
between visual representations and Keras code. DL-IDE [48] offers
a visual programming paradigm for abstract DL model develop-
ment, introducing a drag-and-drop interface for constructing neural
networks and implementing a framework-agnostic intermediate
representation for exporting models to different DL libraries. Other
tools like DeepBlocks [7], SMILE [26], and GraphicalAI [44] also aim
to make DL development more accessible through visual interfaces.
Recent tools like Talaria [20] focus on post-training optimization
(e.g., model compression and hardware deployment analysis), while
DeepFlow targets the earlier stages of model design, prototyping,
and debugging. Unlike Talaria, which operates on pre-trained mod-
els, DeepFlow enables users to construct architectures interactively
with hierarchical abstraction and real-time validation, addressing
fundamentally different challenges in the ML development lifecycle.
Existing VPL-based DL tools, however, exhibit several limitations.
These limitations are motivated by the fact that since their develop-
ment, new challenges have emerged in neural network design, most
notably the need for model scalability to accommodate increasingly
custom and complex architectures. Many tools present a limited
and basic set of layer types and customization options, constraining
users’ ability to design complex architectures [52]. For instance,
they primarily support basic layers like convolutional, pooling, and
fully connected layers. The lack of hierarchical abstraction capabili-
ties makes it difficult to build and visualize large, complex networks,
which is crucial for building state-of-the-art architectures [6]. An-
other critical shortcoming is the lack of real-time validation and
interactive debugging options. While some tools offer basic checks,
they do not provide instantaneous feedback on the validity and
potential issues of the designed architecture, leading to errors that
only become apparent during code execution. Moreover, previous
contributions lack thorough qualitative evaluations, limiting our un-
derstanding of how users with varying levels of expertise perceive
and interact with these visual programming environments.

DeepFlow, the main contribution of the paper, addresses these
challenges by enabling users to hierarchically construct neural
networks, starting from low-level nodes and progressively build-
ing more complex architectures through adding, connecting, and
merging layers, while maintaining visualizability and control over
the entire hierarchy. It introduces interactive debugging options,
allowing users to validate and debug their architectures prior to
framework-agnostic export, providing instantaneous feedback. As
such, DeepFlow is designed to be consistent with today’s standards
in deep learning development. Furthermore, we complement exist-
ing works by providing a qualitative assessment of the tool, offering
insights into user experiences and perceptions across different ex-
pertise levels.

3 Design Principles
The development of DeepFlow was driven by a desire to address
key challenges in the field of deep learning model creation. As deep
learning becomes increasingly prevalent across various domains, it
is essential to make the technology more accessible, provide tools
that facilitate intuitive debugging, and ensure that models can scale
to meet the demands of complex tasks. This section explores these
design principles in depth, highlighting how they informed the
creation of DeepFlow. These principles were developed through
a combination of our analysis of existing literature on visual pro-
gramming tools for deep learning [52] and our own experiences in
addressing the limitations of current tools.

3.1 Balancing Accessibility with Advanced
Functionality

DeepFlow is designed to provide accessibility for novices while
offering functionality that benefits experienced practitioners. At
its core, DeepFlow offers an intuitive drag-and-drop interface for
constructing neural networks. Users create DL models by sequen-
tially arranging nodes on a canvas, adding and connecting them
to form the network architecture. This visual approach abstracts
the complexities of the underlying code, allowing users to focus on
the conceptual design of models rather than syntactical details [49].
The method not only simplifies the construction process but also
improves network readability as it expands. DeepFlow offers a com-
prehensive library of pre-built components, representing common
neural network layers and functions. Each component is accompa-
nied by clear descriptions, making it easier for users to understand
and utilize various elements of deep learning architectures. Each
node in DeepFlow represents a specific PyTorch 1 function and
includes configurable parameters. For beginners, the visual repre-
sentation of neural networks helps to understand the structure and
flow of data through different layers. More experienced users could
benefit from the ability to rapidly prototype and experiment with
different architectures without the overhead of writing extensive
code.

1PyTorch (https://pytorch.org) is one of the most popular deep learning frameworks,
widely used in both research and industry.
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Figure 1: DeepFlow’s main user interface, showcasing the canvas area and key functionalities with annotations.

3.2 Ensuring Scalability of Models
As the size of deep learning models needs to grow to reach higher
performances, scalability becomes a critical concern [6]. Modern ar-
chitectures may consist of hundreds of layers, making them difficult
to manage and visualize using conventional tools. This complexity
can overwhelm users, hindering their ability to design, understand,
and modify large-scale models effectively. Traditional interfaces
often struggle to provide a clear overview of the model structure
while still allowing for detailed manipulation of individual com-
ponents [52]. Central to DeepFlow’s approach to scalability is the
concept of supernodes. Users can group multiple layers into these
composite units, effectively encapsulating subsets of the network
into manageable components. In the DeepFlow interface, a supern-
ode appears as a single node on the canvas, but users can delve
into it to reveal the individual nodes that constitute the supernode.
This feature allows for a cleaner visual representation of the model,
enabling users to navigate and edit complex architectures with ease.
Supernodes can contain not only standard nodes but also other
supernodes, allowing for multiple levels of abstraction. DeepFlow’s
user interface supports the creation and management of supernodes
through multiple operations. Users can select multiple nodes and
create a supernode, with the application automatically handling
the encapsulation process. The interface also provides function-
ality to copy and paste supernodes, delete them, or modify their
contents. By facilitating scalability in this way, DeepFlow ensures
that users can design models that meet the demands of advanced

applications without becoming overwhelmed by complexity. Fur-
thermore, DeepFlow’s scalability features significantly enhance its
visualization capabilities. By allowing users to encapsulate com-
plex sub-networks into supernodes, it provides an effective way to
manage and visually comprehend model architectures. This hierar-
chical representation enables users to grasp the overall structure
of advanced deep learning models while retaining the ability to
examine or debug detailed components when needed.

3.3 Facilitating Intuitive Debugging
Debugging deep learning models poses significant challenges due
to the abstract nature of neural networks and the delayed feedback
typically received during training. Traditional development envi-
ronments often lack real-time validation, leading to frustration and
inefficiency as users encounter runtime errors that could have been
prevented during the design phase. Additionally, these environ-
ments typically do not visualize the structure of neural networks,
making it challenging for developers to quickly grasp the overall
architecture and identify potential issues [42]. DeepFlow addresses
this issue by integrating interactive debugging features directly
into the model creation process. As users build their networks,
DeepFlow provides immediate visual feedback on the validity of
the architecture. The system employs an algorithm for continuous
validation of the network structure. This algorithm processes the
network graph to ensure compatibility and correctness at each
step of model construction. It checks for potential errors such as
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Figure 2: node-based model construction in DeepFlow, showing a partial ResNet [18] architecture.

mismatched input shapes, incompatible parameter settings, or in-
correct connections between layers. When an error is detected,
DeepFlow highlights the problematic node with a red outline and
displays a detailed error message. This visual feedback allows users
to quickly identify and locate issues within their network structure.
The error messages are designed to be informative, providing con-
text about the nature of the problem and potential solutions. By
catching errors early and providing detailed feedback we aim at
reducing the trial-and-error typically associated with deep learning
development.

4 DeepFlow: Implementation and Key Features
Building upon the design principles we implemented DeepFlow
with features that align closely with these objectives and support
effective user interaction patterns.

4.1 User Interface Overview
The user interface of DeepFlow is designed to provide an intuitive
and accessible entry point for users. As shown in Figure 1, the main
screen features a vertical menu bar on the left side, a layout that
aligns with common interaction patterns, offering quick access to
essential functions. In detail, the vertical menu includes options
for Network Builder, which allows users to construct their neural
network models; Network Details, for viewing and editing network
specifications; Training Settings, where users can configure model
training parameters; Network Import/Export, for saving or loading
network designs; TrainingMetrics, to view performance results; and
a User Guide, providing help and documentation. These functions

align with DeepFlow’s design objectives and features commonly
found in VPTs for deep learning,

4.2 Node-Based Model Construction
DeepFlow employs a drag-and-drop interface for constructing neu-
ral networks, as illustrated in Figure 2. Users can add various types
of layers and operations to their models, including input nodes
(such as the Input Dataset), convolutional layers, pooling layers
(like Max Pooling 2d and Average Pooling 2d), and other operations
(such as Flatten, Linear, and Softmax). This visual method of model
construction directly supports our design goal of accessibility by
allowing users to build complex models without writing code. Con-
nections between nodes are created by lines linking one node’s
output to another’s input, as seen in the image. The system ensures
compatibility between connected layers, supporting intuitive de-
bugging by helping users identify and correct connection errors as
they build their models. A key feature of DeepFlow is the concept
of supernodes, represented by the “new superblock” and its copy
in Figure 2. These supernodes allow users to encapsulate complex
sub-networks, supporting scalability in model design. The supern-
ode focus at the top of the screen provides quick access to created
supernodes, enabling efficient navigation and management of large,
complex architectures.

4.3 Supernode Creation and Scalability
To ensure the scalability of models and simplify the design of large
networks, DeepFlow introduces the concept of supernodes, which
encapsulate complex substructures within the network. As reported
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Figure 3: Supernode creation in DeepFlow, showing a residual node encapsulation.

in Figure 3, users can select multiple nodes and create a supern-
ode, grouping related components into a single, manageable en-
tity. This feature supports scalability by allowing users to manage
and navigate large networks more efficiently. Supernodes offer the
advantages of modularity and abstraction. By encapsulating com-
plex structures like residual nodes, users can focus on high-level
architecture without losing access to lower-level details. These
supernodes can be copied and pasted repeatedly throughout the
network, facilitating the creation of repetitive structures common
in deep learning architectures [6, 18]. This aligns with interaction
patterns that favor modular design and reusability, enabling users
to build complex models while maintaining clarity and control. To
further enhance scalability, users can double-click on supernodes
to view their content in detail, allowing for hierarchical exploration
of model structures. This capability is complemented by zoom con-
trols located at the bottom-right of the interface. These controls
allow users to zoom in for detailed work on specific sections of
the model, zoom out for an overview, and fit the entire network
within a single screen view. Together, these functionalities provide
a flexible way to navigate and edit large, complex models, support-
ing both high-level architecture design and detailed component
configuration.

4.3.1 Example: Implementing Multi-Head Attention. To demon-
strate DeepFlow’s support for modern architectures, we outline
the implementation of a multi-head attention mechanism using
supernodes: (1) Construct a subgraph for one head by creating
linear projections for queries, keys, and values (𝑄 , 𝐾 , 𝑉 ), followed

by scaled dot-product computation (MatMul, Scale, and Softmax
nodes). These components are grouped into a reusable Attention-
Head supernode. (2) Replicate the AttentionHead supernode for
multiple heads using DeepFlow’s copy/paste functionality, adjust-
ing input dimensions as needed. (3) Merge outputs from all heads
using a Concat node, then apply a final linear projection layer. (4)
Save the assembled multi-head attention supernode to the library
for reuse in other architectures (e.g., transformers), as illustrated
in Figure 4. This workflow highlights how hierarchical abstraction
simplifies the design of complex, parallel structures while maintain-
ing visual clarity.

4.4 Real-Time Debugging and Validation
DeepFlow incorporates real-time debugging features to help users
identify and resolve issues quickly. The system employs the al-
gorithm, shown in Algorithm 1, for continuous validation of the
network structure as users build or modify their models.

The algorithm processes each node in a topologically sorted or-
der, ensuring that all dependencies are satisfied before a node is
evaluated. It maintains a data structure that keeps track of the cur-
rent state of each terminal in the network. As each node is processed,
the algorithm checks for potential errors such as mismatched input
shapes, incompatible parameter settings, or incorrect connections
between layers.

As shown in Figure 4, when an error is detected, the problematic
node is highlighted with a red outline, and a detailed error message
is displayed. This visual feedback allows users to quickly identify
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Figure 4: Real-time debugging in DeepFlow, highlighting an error in the Conv2d node.

Algorithm 1 Real-Time Network Validation

1: procedure ValidateNetwork(𝑛𝑒𝑡𝑤𝑜𝑟𝑘)
2: 𝑠𝑜𝑟𝑡𝑒𝑑𝑁𝑜𝑑𝑒𝑠 ← TopologicalSort(𝑛𝑒𝑡𝑤𝑜𝑟𝑘)
3: 𝑑𝑎𝑡𝑎 ← InitializeInputData(𝑛𝑒𝑡𝑤𝑜𝑟𝑘)
4: for each 𝑛𝑜𝑑𝑒 in 𝑠𝑜𝑟𝑡𝑒𝑑𝑁𝑜𝑑𝑒𝑠 do
5: 𝑖𝑛𝑝𝑢𝑡𝐷𝑎𝑡𝑎 ← GatherInputData(𝑛𝑜𝑑𝑒, 𝑑𝑎𝑡𝑎)
6: 𝑜𝑢𝑡𝑝𝑢𝑡𝐷𝑎𝑡𝑎 ← ProcessNode(𝑛𝑜𝑑𝑒, 𝑖𝑛𝑝𝑢𝑡𝐷𝑎𝑡𝑎)
7: UpdateDataState(𝑑𝑎𝑡𝑎, 𝑛𝑜𝑑𝑒, 𝑜𝑢𝑡𝑝𝑢𝑡𝐷𝑎𝑡𝑎)
8: HighlightError(𝑛𝑜𝑑𝑒)
9: end for
10: return true
11: end procedure

and locate issues within their network structure. The real-time
nature of this validation process creates an immediate feedback loop,
aiming to reduce the time spent on troubleshooting. Users can learn
from mistakes in real-time and adjust their designs accordingly,
ensuring a smoother development experience and encouraging
design exploration.

By integrating this debugging mechanism into the model con-
struction process, DeepFlow implements the design principle of
intuitive debugging. This approach is particularly beneficial for
novice users, helping in error detection but also aiding in under-
standing the relationships between different layers to learn the
fundamentals of neural network architecture. For experienced prac-
titioners, it facilitates iterating fast on complex model designs.

4.5 Additional Features
To ensure a comprehensive tool and enable fair comparison with
existing solutions, DeepFlow implements several additional features
that are common in VPTs for deep learning:

4.5.1 Training Configuration and Results Visualization. Although
our tool primarily focuses on the design of neural network archi-
tectures, for fair comparison with existing tools, we implemented
additional features related to model training and evaluation. Once
a model is constructed and validated, users can configure training
parameters and initiate the training process. DeepFlow provides vi-
sualization of results, including training and validation loss curves,
accuracy metrics over epochs, confusion matrices for classification
tasks, and layer-wise activation visualizations.

4.5.2 Export and Interoperability. DeepFlow supports exporting
models in various formats, such as PyTorch (.pth) for direct use
in PyTorch environments, ONNX format for interoperability with
other frameworks, and JSON representation for easy sharing and
version control. This feature ensures that models created in Deep-
Flow can be seamlessly integrated into existing workflows or de-
ployed in production environments. By facilitating interoperability,
DeepFlow enhances scalability and supports users as they advance
to more complex projects or integrate with other tools. This aligns
with interaction patterns that value flexibility and adaptability, al-
lowing users to transition smoothly between different stages of
development.
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5 User Study
Building on findings from [49], which demonstrated that visual pro-
gramming reduces development time and improves task completion
rates compared to coding, this study focuses on novel capabilities
like hierarchical abstraction and debugging. Our results extend
these prior insights by exploring how these features are perceived
across expertise levels. To evaluate the effectiveness of DeepFlow in
facilitating deep learning model development, particularly through
its scalability and debugging features, we conducted a user study
involving 16 deep learning practitioners with varying levels of
expertise. This choice of diverse expertise levels is motivated by
the multiple advantages that visual programming languages have
demonstrated, both in enhancing rapid prototyping for expert users
and in improving accessibility for novices in the field of deep learn-
ing [49]. Our methodology combines quantitative measurements
with qualitative insights to provide an understanding of both the
efficacy of the proposed tool and users’ experiences.

5.1 Participants
We recruited participants using a combination of snowball and
convenience sampling, focusing on individuals with an interest
or experience in machine learning and deep learning. Prospective
participants completed an initial questionnaire covering:
• Demographic and background information: age, gender, ed-
ucational background, current occupation, and experience
with machine learning.
• DL proficiency: self-rated confidence in machine learning
concepts (novice, beginner, intermediate, advanced, expert).
• Coding frequency: how often they engage in DL program-
ming (less than once a month to more than once a week).

Participants qualified for the study if they met the following criteria:
a) currently employed or studying in a field related to computer sci-
ence, engineering, or data science; b) proficiency in English; c) some
level of familiarity with machine learning concepts; and d) experi-
ence in coding or implementing DL models. We aimed for a diverse
sample in terms of expertise levels, backgrounds, and current roles
to ensure a range of perspectives. Our final sample consisted of 16
participants (13 males and 3 females) with ages ranging from 19 to
30 years old. The majority (12) were in the 22-26 age range, with 2
participants aged 19-21, and 2 aged 27-30. The sample represented
a variety of educational backgrounds, with 5 participants pursu-
ing bachelor’s degrees, 2 pursuing master’s degrees, 7 pursuing or
holding doctoral degrees, and 2 employed as software engineers.
Participants had varying levels of DL experience and expertise. In
terms of DL confidence, 5 participants rated themselves as expert, 4
as advanced, 5 as intermediate, 1 as beginner, and 1 as novice. The
sample included individuals from diverse backgrounds, including
biomedical engineering (4), computer engineering (8), electronic
engineering (1), and others (3). All participants reported some level
of experience with machine learning concepts and coding. The
frequency of DL programming varied widely among participants,
from less than once a month (5 participants) to more than once a
week (3 participants). This diversity in expertise levels, from novice
students to experienced researchers and professionals, provides
an optimal context for evaluating the effectiveness and user inter-
action with DeepFlow across a wide spectrum of deep learning

proficiency. Table 1 provides an overview of the sample, including
their occupations, DL confidence levels, and coding frequencies.

5.2 Procedure
We conducted the study in individual sessions, each lasting ap-
proximately one hour. The study was structured into three main
phases:

Introduction and consent. Participants were briefed on the
study’s purpose and procedures, and provided informed con-
sent. They were reminded that the study aimed to evaluate
the tools, not their personal performance.

Task completion. Participants were tasked with construct-
ing a ResNet [18] architecture using both traditional coding
methods and DeepFlow. ResNet was selected for its historical
significance in enabling scalability through the introduction
of residual connections, a concept central to modern deep
learning architectures. Its structure, composed of repeating
residual blocks, serves as an ideal test case for DeepFlow’s
superblock feature, allowing us to assess the tool’s effec-
tiveness in managing complex, scalable designs. Moreover,
ResNet’s prevalence in both academic and industrial settings
ensures that it provides a familiar reference point for par-
ticipants across all levels of expertise. To mitigate potential
learning effects, the order of these tasks was counterbalanced
among participants.

Post-task evaluation. After completing each task, participants
answered a Single Ease Question (SEQ) [43], rating the diffi-
culty of the task on a 7-point Likert scale. Following all tasks,
participants filled out the System Usability Scale (SUS) [5]
questionnaire for DeepFlow. They also participated in a semi-
structured interview to gather more in-depth feedback on
their experience, discussing potential impacts of the tool on
their deep learning workflow.

5.3 Measurements
We collected both quantitative and qualitative data to assess the
effectiveness of DeepFlow compared to traditional coding:

Success rate. We recorded whether participants successfully
completed the ResNet model design task using traditional
coding and each subtask using DeepFlow, providing insights
into the effectiveness of each method.

Error count. We tracked the number of critical and non-critical
errors made during task completion for both the traditional
coding approach and DeepFlow subtasks.

Single Ease Question (SEQ). After each task, participants rated
the perceived difficulty on a 7-point Likert scale, providing
immediate feedback on task complexity.

System Usability Scale (SUS). The SUS scores provided a quan-
titative measure of perceived usability for DeepFlow.

Qualitative feedback. The think-aloud protocol during task
completion and the semi-structured interviews explored par-
ticipants’ experiences, preferences, perceived strengths and
weaknesses of each method, and suggestions for improve-
ment.

This combination of measurements allowed us to assess both
the task performance and subjective experiences of participants
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Table 1: An overview of the 16 participants in our user study, including their demographic information, occupation, and
self-reported experience with DL and coding frequency.

ID
(Gender, Age)

Occupation DL
Confidence

DL Coding
Frequency

P1 (M, 23) M.S. Student in Biomedical Engineering

P2 (M, 25) Student in Biomedical Engineering

P3 (M, 24) Student in Biomedical Engineering

P4 (F, 25) Student in Computer Engineering

P5 (M, 22) M.S. Student in Computer Science

P6 (M, 25) Researcher in Cinema Engineering

P7 (M, 24) Ph.D. Student in Computer Engineering

P8 (M, 24) Student in Biomedical Engineering

P9 (F, 30) Research Assistant in Bioengineering

P10 (F, 27) Post-Doc Researcher in DL

P11 (M, 19) Student in Computer Engineering

P12 (M, 26) Ph.D. Student in Computer Engineering

P13 (M, 28) Ph.D. Student in Computer Engineering

P14 (M, 25) Software Engineer

P15 (M, 25) Ph.D. Student in Computer Engineering

P16 (M, 23) Software Engineer
= Novice, = Beginner, = Intermediate, = Advanced, = Expert

= Less than once a month, = Once a month, = Less than once a week, = Once a week, = More than once a week

across different expertise levels when using DeepFlow compared to
traditional coding methods.While direct time comparisons between
the methods were not feasible due to the different task structures,
our focus on qualitative feedback and task-specific metrics provided
valuable insights into the relative strengths and potential areas for
improvement in each approach.

5.4 Data Analysis
We employed a mixed-methods approach to analyze our data, com-
bining quantitative statistical analyses with qualitative examination
of participant feedback.

Quantitative analysis:We used descriptive statistics to sum-
marize the success rates for both the traditional coding task and
DeepFlow subtasks. The SEQ responses for DeepFlow subtasks
were analyzed using means and standard deviations to assess per-
ceived task difficulty. A paired t-test was conducted to compare
the difficulty of tasks performed using coding versus DeepFlow.
System Usability Scale (SUS) score was calculated and interpreted
according to standard SUS guidelines.

Qualitative analysis: For the interview data, we focused on
extracting relevant quotes and insights that reflected participants’
experiences. We reviewed the interview transcripts, identifying
statements that provided rich descriptions of participants’ thoughts,
preferences, and suggestions regarding their use of DeepFlow and
how it compared to their usual coding practices. These quotes were
then organized thematically to complement and provide context
for our quantitative findings, offering a deeper understanding of
participants’ interactions with DeepFlow.

6 Results
This section presents both quantitative and qualitative results from
our user study.

6.1 Quantitative Results
The System Usability Scale (SUS) questionnaire results, as shown in
Figure 5, indicate a generally positive user experience with Deep-
Flow. The overall SUS score of 79.53 falls into the “good” range of
usability, suggesting that users found the system largely intuitive
and effective. Key observations from the SUS results reveal high
user confidence and a desire for frequent system use. Participants
generally perceived the system as easy to use with well-integrated
functions. However, there was some indication that technical sup-
port might be needed for certain users. Opinions on the learning
curve were mixed, with some users feeling they needed to acquire
significant knowledge before effectively using the system. This
analysis highlights DeepFlow’s strengths in user-friendliness and
functionality, while also identifying areas for potential improve-
ment in user onboarding and support.

Figure 6 presents the results of the Single Ease Question (SEQ)
comparing the perceived difficulty of completing tasks using tra-
ditional coding versus DeepFlow. The average difficulty score for
coding was 3.31 out of 5 (SD = 0.89), while for DeepFlow it was
2.12 (SD = 0.76). This significant difference (p < 0.05) indicates
that participants found tasks considerably easier to complete using
DeepFlow compared to traditional coding methods. The lower score
for DeepFlow suggests that its visual programming approach and
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Figure 5: System Usability Scale (SUS) questionnaire results for DeepFlow.

intuitive interface effectively reduced the perceived complexity of
creating deep learning models.

Figure 7 provides a more detailed breakdown of task difficulty
across different user groups. Notably, while novice users reported
significantly higher difficulty levels in coding tasks compared to
experts, the difficulty levels for DeepFlow tasks were more compa-
rable between novices and experts. For this analysis, we split the
participants into two groups: novices (self-reported DL confidence
≤ 3) and experts (self-reported DL confidence > 3). This obser-
vation underscores DeepFlow’s potential to make deep learning
model creation more accessible by reducing the perceived complex-
ity difference between experienced and novice users. The visual
programming approach appears to effectively lower the barrier
of entry for beginners while still providing a useful tool for more
experienced practitioners.

6.2 Qualitative Results
To evaluate the usability and effectiveness of DeepFlow, we con-
ducted an analysis of participant responses (P1–P16) to semi-structured
questions.

6.2.1 Ease of Use and Intuitiveness. A predominant theme among
participants was the ease of use and intuitiveness offered by Deep-
Flow’s. Many participants found that the graphical user interface

simplified the process of building deep learning models, making it
more accessible, especially for those less familiar with coding.

Participant P1 (novice) highlighted this by stating, “DeepFlow
simplifies the process of creating a deep learning model by providing a
graphical user interface that enables me to intuitively translate what
I have in my mind into a model.” This sentiment was echoed by P2
(expert), who mentioned, “It’s much easier and faster than writing
code.”

Participant P4 (expert) found the tool intuitive and appreciated
the speed of development: “It was quicker and more intuitive. The
possibility to visualize the nodes and connect them helped me to easily
understand the flow of the model.” Similarly, P6 (novice) noted, “You
can build a model faster and set the parameters easily.”

6.2.2 Enhanced Visualization and Understanding. The visual na-
ture of DeepFlow was recognized as a significant advantage for
understanding and conceptualizing deep learning architectures.
Participants appreciated the ability to see the model’s structure and
flow, which aided in comprehension and communication.

P3 (expert) observed, “DeepFlow made it easier to visualize the
steps of creating a model with each layer pass compared to raw code.”
P4 (expert) also emphasized the benefit of visualization: “The pos-
sibility to visualize the nodes and connect them helped me to easily
understand the flow of the model.”
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Figure 6: Comparison of average task difficulty scores between coding and using DeepFlow.

P12 (novice), who lacked prior deep learning experience, found
the approach advantageous: “Not having experience in creating deep
learningmodels, I can say that I like the app’s approach. It seems useful
because it replaces repetitive programming tasks that are convenient
to perform ’on the fly’ graphically.”

6.2.3 Prompt Feedback and Error Prevention. Participants valued
the immediate feedback provided by DeepFlow, which helped pre-
vent errors during model creation. The tool’s ability to check for
correctness in layer connections and parameter configurations was
seen as a beneficial feature. P1 (novice) mentioned, “Having a clear
block-wise list of parameters that I have to define allows me not to
miss any. In the end, prompt feedback on the correctness of the links
between one layer and the other helped me a lot in avoiding model-
ing errors.” P3 (expert) also appreciated the system’s checks: “The
system was useful in providing checks to make sure the model didn’t
have any mismatched parameters between nodes.”

6.2.4 Impact onWorkflow and Productivity. Participants had mixed
opinions on how DeepFlow would impact their workflow if used
regularly. Many believed it could enhance efficiency and streamline
the development process, while others felt it might not integrate
well with their existing practices.

P1 (novice) anticipated a positive impact: “I think that using
DeepFlow regularly would improvemyworkflow because I could create
a new model by visualizing a previous one I created for a similar task
and graphically modify the nodes with direct feedback.” P4 (expert)
agreed, stating, “It would make the process of creating a deep learning
model more efficient, and it would also allow for experimenting with
various hyperparameters and different configurations of the model
within a single environment.”

Conversely, P5 (expert) felt that DeepFlow might not fit into
their workflow: “I prefer to write code. I think of it as a learning tool
and not a programming tool.” P15 (expert) shared this perspective,
noting that it would likely slow them down: “It would likely slow
me down as it is not the same as programming.”.

6.2.5 Comparison with Traditional Coding. When comparing the
visual programming approach of DeepFlow to traditional coding,
participants highlighted both advantages and disadvantages. On
the positive side, the visual approach was seen as more accessible
and easier for beginners. P1 (novice) stated, “It makes it much easier
and faster.” P12 (novice) added, “It is definitely better for those who
would like to have a visualization of the whole model.”

However, some experienced programmers preferred traditional
coding methods, citing familiarity and the efficiency of code-centric
tools. P8 (expert) commented, “Usually I just program my DL models.
I am just more comfortable doing everything by code at this point; a
visual system does not add much value to my process, if anything it
slowed me down, because it does not have stuff like code completion
or the shortcuts that I am used to using.” P5 (expert) commented, “I
think it fits perfectly to teach the basics of deep learning but not as a
tool that programmers would use every day.”. P5 (expert) also felt that
changing parameters was easier when directly manipulating code:
“I feel that the biggest drawback is changing the parameters for each
layer. I think looking directly at the code makes it easier to change
parameters.”. P13 (expert) emphasized the efficiency of coding: “In
my view, traditional coding is hard to beat, and things that rely on
using a mouse pointer usually slow things down.”.

6.2.6 Potential Use Cases. Many participants identified education
and beginner projects as ideal scenarios for using DeepFlow. The
tool’s visual and intuitive nature makes it well-suited for teach-
ing deep learning concepts and lowering the barrier to entry for
newcomers.

P3 (expert) noted, “DeepFlow would be best used for beginner
projects for those just getting into deep learning, as it would help
users visualize and understand how deep learning works.” P5 (expert)
echoed this sentiment: “I think that it would be good for learning
and teaching.”

P11 (novice) emphasized the tool’s accessibility: “The visual pro-
gramming allows access to DNNs even to people with shortcomings
or difficulties in programming. Think of a person approaching this
sector with little or no prior knowledge.”. Participants believed that
tools like DeepFlow could significantly impact the field by making
deep learning more accessible and shifting the focus from coding
to model design. P1 (novice) suggested that such tools “will enable
programmers in different areas, not especially experts in DL, to include
DL in their processing pipelines.”

P4 (expert) envisioned improved efficiency: “It could help devel-
opers to easily experiment with changes in the models in very few
seconds, making efficient the model creation and improvement.” P7
(novice) reflected on the broader implications: “I think that node-
based programming is a super interesting concept because, if well
made, systems that allow its use not only simplify the work of those
who work in a certain field every day (e.g., deep learning) but also
allow more people to approach that field, perhaps people intimidated
by some aspects of programming.”
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Figure 7: Comparison of task difficulty between experts and novices for coding and DeepFlow tasks.

6.2.7 Challenges and Limitations. Participants provided valuable
suggestions for enhancing DeepFlow to better meet their needs. Key
recommendations included improving the intuitiveness of advanced
features, enhancing the user interface, and expanding functionality.
P6 (novice) suggested integrating common architectures: “It could
be improved by adding common architectures already available in
PyTorch, for example, and allowing them to be imported without the
need of constructing them from scratch.”. P4 (expert) proposed ex-
panding the tool’s capabilities: “DeepFlow could be enhanced with
the introduction of new nodes and add links to the documentation of
the framework (PyTorch, TensorFlow) of each block. Another improve-
ment could be the possibility of downloading the whole code, including
the training procedure and not only the model, could be very helpful.”.
Participants identified several usability issues in DeepFlow, particu-
larly with the implementation of supernodes and certain interface
elements. Additionally, participants reported difficulties with node
connections, a lack of expected keyboard shortcuts, and disruptive
error messages. These findings highlight areas for improvement in
the user interface design.

7 Discussion
Our study of DeepFlow reveals several key insights into the poten-
tial and limitations of visual programming tools for deep learning.
The overall System Usability Scale score indicates that participants
generally found DeepFlow to be user-friendly and effective. The
comparison of task difficulty scores between traditional coding
and DeepFlow demonstrates a significant reduction in perceived
difficulty when using the visual interface. Notably, the reduction in
perceived difficulty was consistent across different levels of user
expertise, suggesting that DeepFlow successfully bridges some of
the gaps between novice and experienced users, as also shown in
previous studies [48].

The qualitative analysis highlighted several insights into user
perceptions of the tool. Experienced users, while appreciating Deep-
Flow’s intuitive design, expressed concerns about potential effi-
ciency losses in their established workflows. This preference was
not solely based on habit, but on perceived limitations in Deep-
Flow’s ability to handle edge cases and highly-customized imple-
mentations. Addressing these concerns could be a valuable research
direction to improve DeepFlow for experienced users, while not
impacting its usage by novices. This finding suggests that visual
programming tools in deep learning may not replace traditional
coding entirely, but being most beneficial for experienced users
when integrated with conventional coding approaches, rather than
substituting them. A hybrid approach could potentially satisfy both
the need for intuitive design and the demand for granular con-
trol. While our study emphasizes qualitative feedback for new fea-
tures, prior work [49] established quantitative advantages of visual
programming over coding. Future work will include comparative
benchmarks (e.g., time-to-prototype, error rates) across expertise
levels to further validate these findings.

This observation hints at a broader discussion in human-computer
interaction on how we can design tools that adapt to increasing
expertise without becoming cumbersome [14, 46].

Results demonstrated DeepFlow’s intuitive interface and its abil-
ity to visualize complex model architectures. The visual nature
of DeepFlow encouraged a more holistic, top-down approach to
architecture planning, contrasting with the often bottom-up, layer-
by-layer construction typical in code-based development. Such a
shift in perspective could potentially lead to more innovative and
efficient model designs, as users can more easily conceptualize
and experiment with high-level structural changes. In terms of de-
bugging, the visual representation made architectural flaws more
immediately apparent than in traditional code. Several experienced
users noted enhanced error detection capabilities, suggesting that
visual programming tools are a valuable complementary tool for
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model debugging and optimization. In addition, the rapid proto-
typing capabilities offered by DeepFlow could accelerate the early
stages of model development, even for experienced practitioners. By
allowing quick visualization and manipulation of complex architec-
tures, DeepFlow enables a more iterative and exploratory approach
to model design. This aligns with the concept of "exploratory pro-
gramming" [25], where rapid prototyping leads to more innovative
solutions.

Finally, the tool’s ability to make abstract deep learning concepts
tangible through visual representation can bridge the gap between
theoretical understanding and practical implementation. This is
particularly relevant in educational settings, where the disconnect
between mathematical formulations and their software implemen-
tations often poses a significant hurdle [27]. DeepFlow’s visual
approach might serve as an intermediate step, helping students
translate theoretical knowledge into practical model architectures
more intuitively.

It is crucial to note that there is a risk that users, especially
novices, might rely too heavily on the visual interface without
fully understanding the underlying principles. Future developments
should consider how to balance ease of use with opportunities
for improving the understanding of underlying mechanisms, per-
haps by incorporating interactive tutorials or ’explainable artificial
intelligence’ features that elucidate the reasoning behind model
structures [17].

7.1 Evaluation Scope and Limitations
Our evaluation focused on qualitative insights into DeepFlow’s
novel capabilities (e.g., supernodes, interactive debugging) and their
perceived utility across expertise levels. This approach aligns with
our goal of understanding how visual abstraction and real-time
validation impact user workflows, particularly for complex architec-
tures. While prior work [49] established quantitative advantages of
visual programming, our study intentionally prioritized qualitative
metrics to uncover nuanced user experiences, such as how hierar-
chical abstraction aids architectural scalability or how debugging
feedback reduces cognitive load. However, this scope introduces
limitations. First, our participant pool (16 users) and task design
(ResNet implementation) limit generalizability to more diverse ar-
chitectures (e.g., transformers, graph networks) or specialized do-
mains. Second, while we measured perceived difficulty via SEQ and
usability via SUS, we did not directly compare time-to-prototype or
error rates between DeepFlow and traditional coding—metrics criti-
cal for quantifying productivity gains. Third, the study’s controlled
environment may not fully reflect real-world scenarios where users
iteratively refine models over days or weeks.

8 Conclusion and Future Work
This paper introduced DeepFlow, a flow-based visual programming
tool designed to enhance deep learning development by address-
ing challenges in scalability and debugging. Key contributions of
DeepFlow include the introduction of supernodes for hierarchical
abstraction, enabling efficient management of complex neural net-
work architectures; interactive debugging capabilities providing
real-time validation of network designs; and a qualitative analysis
revealing insights into the tool’s effectiveness and limitations across

different user groups. Our evaluation, involving participants with
varying levels of expertise, demonstrated DeepFlow’s effectiveness
in reducing the perceived difficulty of deep learning model creation
across user groups.

We identified the need to investigate whether and howDeepFlow
can be extended to offer the same level of flexibility as traditional
coding environments. This includes exploring advanced customiza-
tion features that allow more granular control over model com-
ponents and parameters for expert users. Adapting DeepFlow to
support emerging paradigms in machine learning, such as federated
learning or reinforcement learning, could be another promising
avenue for meeting expert users’ requirements. Future research will
conduct large-scale performance comparisons between DeepFlow
and traditional coding, measuring metrics like development speed,
model complexity, and debugging efficiency across user groups.
Additionally, we will focus on integrating visual programming with
traditional coding, potentially through a hybrid interface that com-
bines visual elements with textual coding. This approach could
bridge the gap between the intuitive design of visual programming
tools and the detailed control required by experienced practitioners.
In the context of rapid prototyping, DeepFlow’s potential extends
beyond individual use to collaborative scenarios. The visual nature
of the tool could facilitate communication between team members
with varying levels of technical expertise, fostering a more inclusive
and efficient collaborative design process.

In conclusion, DeepFlow builds upon the demonstrated poten-
tial of visual programming tools in making deep learning more
accessible and efficient [49]. By addressing common pain points
such as model scalability and debugging, as well as assessing feed-
back from users with different expertises, this work takes steps
toward simplifying the complexities inherent in neural network
development and reassessing user needs across different expertise
levels. As deep learning continues to evolve and permeate various
domains, tools like DeepFlow can serve as catalysts for innova-
tion by streamlining development processes, lowering barriers to
entry, and fostering a more inclusive community of practitioners.
This research contributes to the ongoing effort to democratize deep
learning and suggests potential directions for future work in visual
programming interfaces for artificial intelligence development.
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