q

Check for
updates

1

The proliferation of the Internet has fundamentally changed the way we live,
work, and communicate, leading to a substantial demand for website develop-
ment. Traditional website development typically necessitates technical expertise,
which can be a barrier for many individuals without these skills. In response,
researchers and practitioners have sought to develop tools and approaches to
enable end-users to create websites without coding. End-User Development
(EUD) [2,8,16,21] has emerged as a popular approach to enable non-technical
users to create websites [13,17]. Low-code/no-code tools have been developed
to support EUD by offering increased ease of use and flexibility [7,9,23,26,28].
These tools enable users to create websites by visually arranging pre-built com-
ponents, such as buttons, images, and forms, with the underlying code generated

Leveraging Large Language Models
for End-User Website Generation

Tommaso Calo®)® and Luigi De Russis

Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
{tommaso.calo,luigi.derussis}@polito.it

Abstract. This work introduces an innovative approach that harnesses
the power of large language models (LLMs) to facilitate the creation of
websites by end users through natural language specifications. Our key
contribution lies in a user-oriented method that utilizes prompt engineer-
ing, compelling the LLM response to adhere to a specific template, which
in turn enables direct parsing of the model’s responses, allowing users to
focus on refining the generated website without concerning themselves
with the underlying code. The engineered prompt ensures model effi-
ciency by implementing a modification strategy that preserves context
and tokens generated in the LLM responses, updating only specific parts
of the code rather than rewriting the entire document, thereby minimiz-
ing unnecessary code revisions. Moreover, our approach empowers LLMs
to generate multiple documents, augmenting the user experience. We
showcase a proof-of-concept implementation where users submit textual
descriptions of their desired website features, prompting the LLM to pro-
duce corresponding HTML and CSS code. This paper underscores the
potential of our approach to democratize web development and enhance
its accessibility for non-technical users. Future research will focus on
conducting user studies to ascertain the efficacy of our method within
existing low-code/no-code platforms, ultimately extending its benefits to
a broader audience.

Introduction

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. D. Spano et al. (Eds.): IS-EUD 2023, LNCS 13917, pp. 52-61, 2023.
https://doi.org/10.1007/978-3-031-34433-6_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-34433-6_4&domain=pdf
http://orcid.org/0000-0002-3200-2348
http://orcid.org/0000-0001-7647-6652
https://doi.org/10.1007/978-3-031-34433-6_4

Leveraging Large Language Models for End-User Website Generation 53

automatically. Although these tools have simplified website development, they
can be limited in flexibility and may be challenging to use for more complex
websites [1,11,12,25]. One of the primary limitations of low-code/no-code tools
is the steep learning curve associated with their usage. Users often need to invest
significant time learning how to use these tools effectively, which can be a sub-
stantial barrier for non-technical users [18].

Recently, there has been growing interest in leveraging artificial intelligence
(AI) to enable end users to create websites [22]. Large language models (LLMs)
have emerged as a promising approach for generating code based on natural lan-
guage descriptions provided by end users. LLMs are trained on massive amounts
of data and can generate text that closely matches human language, making them
well-suited for generating code from natural language input [4,6,29]. However,
these approaches have certain limitations, such as not allowing users to refine the
output of the LLM with subsequent input or generating multiple pages. These
limitations can hinder users from creating websites tailored to their specific needs
and preferences.

To address these limitations, we propose a novel approach for leveraging
LLMs for EUD using natural language processing to generate code from spec-
ifications. This approach is familiar and intuitive for most people, as it uti-
lizes natural language communication [19,30]. Our method is centered around
prompt engineering, which constrains the LLM response to follow a predefined
template, facilitating the direct parsing of the model’s output. This enables
users to concentrate on refining their generated websites without the need to
delve into the underlying code. Our technique allows users to iteratively adjust
the LLM output and create multiple pages, offering greater adaptability and
command over the generated code. With minimal technical expertise required,
our approach bypasses the necessity to master programming language syntax,
structure, or web development tools, considerably reducing the learning curve
typically associated with website development. In addition, the approach incor-
porates an efficient prompting strategy to interact with external LLM APIs [15],
which enables generating code that benefits from a larger context window! thus
enabling refinements that reference earlier parts of the conversation and earlier
generated documents. By maintaining a longer context, users can create more
complex websites that refer to multiple pages, enhancing the overall functional-
ity and richness of the generated content [15]. The engineered prompt ensures
model efficiency by implementing a modification strategy that preserves context
and tokens generated in the LLM responses, updating only specific parts of the
code rather than rewriting the entire document, thereby minimizing unnecessary
code revisions. This method also results in fewer tokens being generated, leading
to cost savings, as the cost of API usage is related to the number of generated
tokens.

! The context window refers to the amount of information an LLM can process at
once. Preserving context is essential for interactions with LLMs, as it allows user to
reference earlier parts of the conversation within the same generation process.

54 T. Calo and L. De Russis

To demonstrate the feasibility of this approach, we present a proof-of-concept
implementation where users input textual descriptions of their website require-
ments, and the LLM processes this input, generating HTML and CSS code to
construct the desired website. This proof-of-concept showcases LLMs’ potential
in automating website development, reducing the time and effort required. In
summary, our work builds on the emerging areas of EUD and LLMs, aiming to
address existing limitations by empowering users to refine the LLM output with
subsequent input and generate multiple pages. Our approach has the potential to
democratize website development and significantly help bridge the digital divide.

2 Background and Related Works

End-user development (EUD) has attracted significant attention in recent years,
as researchers and practitioners strive to make website development more acces-
sible to non-technical users [2,8,13,16,21,27]. Low-code/no-code tools have
emerged as a leading approach to EUD, offering users the ability to create web-
sites without coding expertise [1,7,9,23,26,28]. Despite their popularity, these
tools often present limited flexibility and can be challenging to use for developing
complex websites [11,12,18,25].

Interestingly, an early prototype of an Al-assisted EUD solution was pre-
sented to the Al and HCI community over 50 years ago, referred to as retrieval
by reformulation, and had a system called RABBIT as its primary example [24].
This work, although significant, did not gain widespread adoption outside of the
research community. Nonetheless, it is important to acknowledge its contribution
to the field as it laid the foundation for future developments.

In recent times, large language models (LLMs) have been identified as a
promising avenue for EUD [4,29]. LLMs, trained on extensive data, can gener-
ate natural language text that closely resembles human language. This capability
makes them well-suited for generating code based on textual descriptions pro-
vided by end-users.

Several studies have explored the use of LLMs for EUD. Huang et al. [10],
for example, proposed a framework that automatically generates website lay-
outs from textual descriptions using LLMs. Chen et al. [6], instead, developed a
method for generating code snippets from natural language queries using LLMs.
These studies underscore the potential of LLMs for EUD and provide a strong
foundation for our research. Our work is unique in its focus on a user-oriented
approach that allows end users to refine the LLM output with subsequent input
iteratively. This feature empowers users to have greater control over the gener-
ated code, ensuring it meets their specific requirements. This refinement process
is a critical aspect that differentiates our work from earlier studies on EUD using
LLMs. While previous research in EUD using LLMs primarily focused on gen-
erating single pages, our work expands this research scope by enabling LLMs to
generate multiple pages. It highlights the importance of designing AI systems
that ensure high control and high automation, qualities essential for systems
interacting with humans.

Leveraging Large Language Models for End-User Website Generation 55

In addition to the existing body of research on EUD and LLMs, it is essen-
tial to consider the relationship between our approach and Al tools that convert
hand-drawn website designs into complete systems (e.g., [3,5]). These tools pro-
vide an intuitive way for non-technical users to create websites without requiring
knowledge of specific website structures and terms. In contrast, our LLM-based
approach might still necessitate that users are familiar with technical terms
to effectively communicate their design intentions, as illustrated by the use of
“navbar” in Fig. 3.

Al services that generate websites based on drawings can offer a more accessi-
ble alternative for users who lack knowledge of website terminology. However, our
proposed LLM-based approach presents several advantages. By utilizing natural
language input, the method encourages iterative refinement of generated code,
providing users with greater control and customization options. Moreover, our
approach can potentially accommodate a wider range of user preferences and
design complexities, as it is not limited to interpreting visual representations.

That said, a discussion comparing the intuitiveness and accessibility of our
LLM-based approach and Al tools that convert drawings into websites is war-
ranted. Future research could explore ways to combine the strengths of both
methods, creating a more comprehensive and user-friendly solution for EUD.
Integrating hand-drawn elements with natural language input could potentially
lead to a more intuitive and powerful tool that caters to users with varying levels
of technical knowledge and design skills.

To conclude, our research makes a contribution to the EUD and LLM
domains by presenting an user-oriented approach that places end-users at the
forefront of the website development process. By offering the ability to refine
LLM outputs with subsequent input and generate multiple pages, we provide
users with a high level of control and customization options [20], thus creating
websites tailored to their specific needs and preferences.

3 Methodology

1 2
User Input —> Prompt Manager —> LLM —> HTML Compiler

Fig. 1. The interactive website development process: (1) User provides input, (2)
Prompt manager processes input, (3) LLM generates HTML code, (4) HTML com-
piler checks for errors, and if any are detected, the process loops back to the prompt
manager for refinement.

In our approach, we utilize a technique that forces the LLM to follow a specific
response template, as outlined by the given prompt in Fig. 2. The primary goal

56 T. Calo and L. De Russis

is to ensure that the generated code is structured and adheres to the user’s
specifications. The LLM is guided by a set of rules that dictate the format of
the generated responses. By leveraging this template-based approach, end users
can focus on their desired website functionality and design without concerning
themselves with the underlying code, as the requests and responses are parsed
in the specified format and rendered as HTML by the system.

When creating a new document, the LLM follows the response structure:
new, {(document name), {code). In cases where a document requires modi-
fications, the LLM adheres to a response format that avoids outputting the
entire code, opting for a more efficient strategy: {(document name)»; <{add or
replace), {nl-n2 range of lines if replace, nl if add), {code);

{(add or replace), <{nl-n2 range of lines if replace, nl if add)
; {code). This technique ensures that only necessary modifications are made,
preserving the original code and avoiding unnecessary API responses. The LLM
takes the user’s request as input, with the format request: (request), and gen-
erates responses according to the aforementioned template. By adhering to the
specified format, the LLM efficiently modifies existing documents, only report-
ing the modification lines and modifications as needed, while leaving unmodified
parts of the document untouched.

Furthermore, the technique facilitates error detection and resolution. The
structured response format allows the parser to identify any errors in the gen-
erated code, providing the user with the necessary information to address these
issues. In cases where the LLM generates code with compiling errors, the system
can rectify the problem directly by prompting the LLM with the error and the
code to correct, as illustrated in Fig. 1. This streamlined approach to error detec-
tion and resolution saves time and effort, making the web development process
more accessible and efficient for non-technical users.

3.1 [Iterative Refinement and Multiple Pages Generation

The methodology allows users to refine the output of the LLM with subsequent
input, providing them with greater flexibility and control over the generated
code. This iterative process ensures that the final website design closely matches
the users’ requirements and preferences. Users can provide feedback and request
changes in real-time, allowing them to actively shape the development process
and avoid time-consuming revisions after the website has been generated. More-
over, the approach enables the generation of multiple pages, further enhancing
the user experience and providing a more comprehensive website development
solution. Users can create interconnected pages with varying designs and con-
tent, allowing for the development of complex and feature-rich websites without
needing extensive technical expertise.

3.2 Variety of Design Options

The proposed approach offers users the possibility to choose between a variety of
design options in the generated documents. By providing diverse design alterna-

Leveraging Large Language Models for End-User Website Generation 57

Prompt:

You have been asked to create HTML and CSS code based on the user’s spec-
ifications. You can create multiple HTML documents, but only one CSS doc-
ument which will contain the page’s style. I will tell you the format of needed
responses, you must strictly follow the following response format, and you must
not output other words that are not contained in the formats.

If you need to create a new document, your response must be in the form of:
new, (document name), (code).

If you need to modify a document already generated in another response, you
must not output the whole code, even if the modification is large, you must use
the following format for your response:

(document name); (add or replace), (n1-n2 range of lines if replace, nl if
add), (new line); ... (add or replace), (n1-n2 range of lines if replace, nl if
add); (new line).

If no changes are required to a given document you must not output nothing.
You need to specify <add> if the line must be added to the specified line number
while <replace> if the line at the specified range must be replaced to accomplish
the modification.

Note that the user’s request will be inputted as “request:(request)”.

Also, if you need to modify an existing document, please only report the mod-
ification lines and modification in the format specified above, as efficiently as
possible. In order to not rewriting unmodified parts of the document.

Fig. 2. The prompt engineered to create and modify HTML and CSS documents based
on natural language specifications, with strict response formats for creating new doc-
uments and updating existing ones.

tives, users can explore different aesthetics and layouts for their website, ensuring
that the final product aligns with their desired look and feel. This feature adds
an extra layer of customization and adaptability to the website development
process, empowering users to create a unique and personalized online presence.

To facilitate the selection of design options, the methodology can incorporate
predefined templates or design components that the LLM can use as a start-
ing point. Users can then refine and customize these templates based on their
preferences, allowing them to quickly create visually appealing websites with-
out starting from scratch. The LLM can also learn from user feedback during
the iterative refinement process, further improving the quality of the generated
design options and adapting to the users’ specific needs.

3.3 Efficient Prompting Strategy

The efficient prompting strategy involves asking the LLM only to respond with
the number of lines to modify and the specific modifications, instead of rewriting
the entire document. This approach enables the generation of code that benefits
from a larger context window, as fewer interactions and tokens are generated. As
a result, the LLM can accommodate a more extended sequence of refinements,
leading to better model performance and improved user experience.

58 T. Calo and L. De Russis

One of the core challenges in leveraging LLMs for website development is
managing the limitations imposed by the maximum token length of the model.
Other approaches often involve generating the entire codebase in one go, which
may result in exceeding the token limit. By using the efficient prompting strategy,
the methodology allows the model to focus on the most relevant portions of the
code, thus reducing the likelihood of exceeding the token limit. Minimizing the
number of generated tokens is essential for reducing the cost of API usage, as the
cost is directly related to the number of tokens generated. This not only makes
the methodology more affordable for end-users but also enables more extensive
usage of LLM resources for website development.

Additionally, a larger context window allows the model to process longer
sequences of text, enhancing its understanding of the user’s requirements and
improving its ability to generate accurate and contextually relevant code. Max-
imizing the context window also helps the LLM to maintain coherence across
the generated code, ensuring that the resulting website maintains a consistent
design and structure. As the LLM has access to more contextual information, it
can make better-informed decisions when generating code, improving the overall
quality of the generated website.

By generating fewer tokens, the proposed approach leads to cost savings
and better resource usage, as discussed in the previous sections. This not only
makes the methodology more affordable for end users but also enables more
extensive usage of LLM resources for website development. The efficient use
of API resources can also lead to faster response times and a more seamless
experience for users when interacting with the LLM.

3.4 Proof of Concept

To demonstrate the effectiveness of our approach, we have developed a proof-
of-concept implementation using GPT-4 [14], showcasing the technique’s practi-
cal application. Figure 3 illustrates the sequential website development natural
language instructions with the GPT-4 model. The figure highlights the interac-
tion format, enabling readers to understand the structured responses and the
methodology applied. Although the actual code in the responses is not shown,
the reported responses provide sufficient information to comprehend the tem-
plate and the format used in the GPT-4 interaction. This proof-of-concept serves
as a tangible example of how our approach can be employed in real-world sce-
narios to create and refine websites using natural language specifications and the
power of LLMs, ultimately streamlining the web development process for end
users.

4 Conclusion

The proposed methodology consists of an efficient prompting strategy for inter-
acting with external LLM APIs, which optimizes resource usage and enhances
the user experience. By focusing on minimizing the number of generated tokens

Leveraging Large Language Models for End-User Website Generation 59

Rendered

Request Response Document

Generate a webpage with a
three button navbar on top with new, index html, code

new, style.css, code

Selected Style

Change the cards of index page index html; replace, 19-32; code
to a form where it is asked
name, mail, and telephone styles.css; add, 43; .form-group ... Phone:
number
=
Generate a new page connected ":d?x html; replwace, ”'"] 1 N
to the discover button, that Wonders of Casteddu

Discover

contains a list of wonders of
Casteddu

new, discover.html; code
styles.css; add, 48; code

New Page
Refinement

Fig. 3. Sequential website development process visualized in columns and rows:
Columns display the Request, Response, and Rendered Page; Rows showcase three
requests - the first and third for generating new pages, and the second for refining the
existing page. Note that the code in the response is not reported, however, the reported
responses should let readers understand the format used to interact with the LLM.

and maximizing the context window, this approach enables cost savings, better
resource usage, improved model performance, and more refined control over the
generated code.

The provision of a variety of design options and iterative refinement further
adds to the customization and adaptability of the website development process.
By addressing the core challenges of LLM-based website development, such as
token limitations and contextual understanding the proposed methodology is
ready to be integrated with existing low-code/no-code tools to enable a wider
audience to benefit from the technology.

As a future work, the approach can be integrated with a low-code/no-code
platform to ascertain the efficacy and utility of the methodology, through user
studies. This integration can also streamline the development process by pro-
viding an interface for users to interact with the LLM, further enhancing the
overall user experience. The final goal will always be to democratize website
development and make it more accessible to users without technical expertise.

References
1. Alamin, M.A.A., Malakar, S., Uddin, G., Afroz, S., Haider, T., Igbal, A.: An empir-

ical study of developer discussions on low-code software development challenges,
pp. 46-57, 05 2021. https://doi.org/10.1109/MSR52588.2021.00018

https://doi.org/10.1109/MSR52588.2021.00018

60

10.

11.

12.

13.

14.
15.

16.

T. Calo and L. De Russis

Barricelli, B.R., Cassano, F., Fogli, D., Piccinno, A.: End-user development, end-
user programming and end-user software engineering: a systematic mapping study.
J. Syst. Softw. 149, 101-137 (2019). https://doi.org/10.1016/j.jss.2018.11.041
Beltramelli, T.: Pix2code: generating code from a graphical user interface screen-
shot. In: Proceedings of the ACM SIGCHI Symposium on Engineering Interactive
Computing Systems. EICS 2018, Association for Computing Machinery, New York
(2018). https://doi.org/10.1145/3220134.3220135

Brown, T., et al.: Language models are few-shot learners. In: Larochelle,
H., Ranzato, M., Hadsell, R., Balcan, M., Lin, H. (eds.) Advances
in Neural Information Processing Systems, vol. 33, pp. 1877-1901. Cur-
ran Associates, Inc. (2020). https://proceedings.neurips.cc/paper/2020/file/
1457c0d6bfcb4967418bfb8ac142{64a- Paper.pdf

Calo, T., De Russis, L.: Style-aware sketch-to-code conversion for the web. In: Com-
panion of the 2022 ACM SIGCHI Symposium on Engineering Interactive Com-
puting Systems, pp. 44-47. EICS 2022 Companion, Association for Computing
Machinery, New York (2022). https://doi.org/10.1145/3531706.3536462

Chen, M., et al.: Evaluating large language models trained on code. arXiv preprint:
arXiv:2107.03374 (2021)

Di Ruscio, D., Kolovos, D., de Lara, J., Pierantonio, A., Tisi, M., Wimmer, M.:
Low-code development and model-driven engineering: two sides of the same coin?
Softw. Syst. Model. 21(2), 437—446 (2022). https://doi.org/10.1007/s10270-021-
00970-2

Ghiani, G., Paterno, F., Spano, L.D., Pintori, G.: An environment for end-user
development of web mashups. Int. J. Hum. Comput. Stud. 87, 38-64 (2016).
https://doi.org/10.1016/j.ijhcs.2015.10.008

Gomes, P.M., Brito, M.A.: Low-code development platforms: a descriptive study.
In: 2022 17th Iberian Conference on Information Systems and Technologies
(CISTI), pp. 1-4 (2022). https://doi.org/10.23919/CISTI154924.2022.9820354
Huang, F., Li, G., Zhou, X., Canny, J.F., Li, Y.: Creating user interface mock-
ups from high-level text descriptions with deep-learning models. arXiv preprint:
arXiv:2110.07775 (2021)

Kass, S., Strahringer, S., Westner, M.: Drivers and inhibitors of low code develop-
ment platform adoption. In: 2022 IEEE 24th Conference on Business Informatics
(CBI), vol. 01, pp. 196-205 (2022). https://doi.org/10.1109/CBI54897.2022.00028
Luo, Y., Liang, P., Wang, C., Shahin, M., Zhan, J.: Characteristics and challenges
of low-code development: the practitioners’ perspective. In: Proceedings of the
15th ACM / IEEE International Symposium on Empirical Software Engineering
and Measurement (ESEM). ESEM 2021, Association for Computing Machinery,
New York (2021). https://doi.org/10.1145/3475716.3475782

Namoun, A., Daskalopoulou, A., Mehandjiev, N., Xun, Z.: Exploring mobile end
user development: existing use and design factors. IEEE Trans. Software Eng.
42(10), 960-976 (2016). https://doi.org/10.1109/TSE.2016.2532873

OpenAl: Gpt-4 Technical Report (2023)

Ouyang, L., et al.: Training language models to follow instructions with human
feedback. arXiv preprint: arXiv:2203.02155 (2022)

Rode, J., Rosson, M.B., Qui nones, M.A.P.: End user development of web applica-
tions. In: Lieberman, H., Paterno, F., Wulf, V. (eds.) End User Development.
Human-Computer Interaction Series, vol. 9, pp. 161-182. Springer, Dordrecht
(2006). https://doi.org/10.1007/1-4020-5386-X_8

https://doi.org/10.1016/j.jss.2018.11.041
https://doi.org/10.1145/3220134.3220135
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.1145/3531706.3536462
http://arxiv.org/abs/2107.03374
https://doi.org/10.1007/s10270-021-00970-2
https://doi.org/10.1007/s10270-021-00970-2
https://doi.org/10.1016/j.ijhcs.2015.10.008
https://doi.org/10.23919/CISTI54924.2022.9820354
http://arxiv.org/abs/2110.07775
https://doi.org/10.1109/CBI54897.2022.00028
https://doi.org/10.1145/3475716.3475782
https://doi.org/10.1109/TSE.2016.2532873
http://arxiv.org/abs/2203.02155
https://doi.org/10.1007/1-4020-5386-X_8

17.

18.

19.

20.
21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Leveraging Large Language Models for End-User Website Generation 61

Rosson, M.B., Sinha, H., Bhattacharya, M., Zhao, D.: Design planning in end-
user web development. In: IEEE Symposium on Visual Languages and Human-
Centric Computing (VL/HCC 2007), pp. 189-196 (2007). https://doi.org/10.1109/
VLHCC.2007.45

Sahay, A., Indamutsa, A., Di Ruscio, D., Pierantonio, A.: Supporting the under-
standing and comparison of low-code development platforms. In: 2020 46th Euromi-
cro Conference on Software Engineering and Advanced Applications (SEAA), pp.
171-178 (2020). https://doi.org/10.1109/SEAA51224.2020.00036

Sales, J.E., Freitas, A., Oliveira, D., Koumpis, A., Handschuh, S.: Revisiting prin-
ciples and challenges in natural language programming. In: Virvou, M., Nakagawa,
H., C. Jain, L. (eds.) JCKBSE 2020. LAIS, vol. 19, pp. 7-19. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-53949-8_2

Shneiderman, B.: Human-centered Al. Oxford University Press, Oxford (2022)
Sinha, N., Karim, R., Gupta, M.: Simplifying web programming. In: Proceed-
ings of the 8th India Software Engineering Conference, ISEC 2015, pp. 80-89.
Association for Computing Machinery, New York (2015). https://doi.org/10.1145/
2723742.2723750

Stocco, A.: How artificial intelligence can improve web development and testing. In:
Companion Proceedings of the 3rd International Conference on the Art, Science,
and Engineering of Programming. Programming 2019, Association for Computing
Machinery, New York (2019). https://doi.org/10.1145/3328433.3328447
Symmonds, N.: Visual web developer, 01 2006. https://doi.org/10.1007/978-1-
4302-0180-9-5

Tou, F.N., Williams, M.D., Fikes, R., Henderson, A., Malone, T.: RABBIT: an
intelligent database assistant. In: Proceedings of the Second AAAI Conference on
Artificial Intelligence, AAAT 1982, pp. 314-318. AAAI Press (1982)

Tzafilkou, K., Protogeros, N.: Diagnosing user perception and acceptance using
eye tracking in web-based end-user development. Comput. Hum. Behav. 72, 23-37
(2017). https://doi.org/10.1016/j.chb.2017.02.035

Waszkowski, R.: Low-code platform for automating business processes in manu-
facturing. IFAC-PapersOnLine 52(10), 376-381 (2019). https://doi.org/10.1016/
j.ifacol.2019.10.060. 13th IFAC Workshop on Intelligent Manufacturing Systems
IMS 2019

Wong, J.: Marmite: towards end-user programming for the web. In: IEEE Sympo-
sium on Visual Languages and Human-Centric Computing (VL/HCC 2007), pp.
270-271 (2007). https://doi.org/10.1109/VLHCC.2007.40

Woo, M.: The rise of no/low code software development-no experience needed?
Engineering 6(2020). https://doi.org/10.1016/j.eng.2020.07.007

Wu, C., Yin, S., Qi, W., Wang, X., Tang, Z., Duan, N.: Visual ChatGPT: talk-
ing, drawing and editing with visual foundation models (2023). https://doi.org/
10.48550/ARXIV.2303.04671, https://arxiv.org/abs/2303.04671

Xu, F.F., Vasilescu, B., Neubig, G.: In-ide code generation from natural language:
promise and challenges. ACM Trans. Softw. Eng. Methodol. 31(2), 1-47 (2022).
https://doi.org/10.1145/3487569

https://doi.org/10.1109/VLHCC.2007.45
https://doi.org/10.1109/VLHCC.2007.45
https://doi.org/10.1109/SEAA51224.2020.00036
https://doi.org/10.1007/978-3-030-53949-8_2
https://doi.org/10.1145/2723742.2723750
https://doi.org/10.1145/2723742.2723750
https://doi.org/10.1145/3328433.3328447
https://doi.org/10.1007/978-1-4302-0180-9_5
https://doi.org/10.1007/978-1-4302-0180-9_5
https://doi.org/10.1016/j.chb.2017.02.035
https://doi.org/10.1016/j.ifacol.2019.10.060
https://doi.org/10.1016/j.ifacol.2019.10.060
https://doi.org/10.1109/VLHCC.2007.40
https://doi.org/10.1016/j.eng.2020.07.007
https://doi.org/10.48550/ARXIV.2303.04671
https://doi.org/10.48550/ARXIV.2303.04671
https://arxiv.org/abs/2303.04671
https://doi.org/10.1145/3487569

	 Preface
	 Organization
	Keynotes
	 Putting the Human Back in the Loop
	 How Do We Make Explanations Beneficial to Different Users?
	 Contents

	Artificial Intelligence for End-Users
	Adaptive and Adaptable Systems: Differentiating and Integrating AI and EUD
	1 Introduction
	2 Differentiating AI and EUD Approaches
	3 AutoCorrect: A Simple Example for Illustration
	4 Adaptive Systems
	5 Adaptable Systems
	6 Challenges for the Future
	6.1 Example: ChatGPT—The Newest “MIraculous” AI Development
	6.2 Symbiosis Between Adaptive and Adaptable Systems
	6.3 Design Guidelines
	6.4 Implication

	7 Conclusions
	References

	End-User Development for Artificial Intelligence: A Systematic Literature Review
	1 Introduction
	2 Planning and Conducting the Systematic Literature Review
	2.1 Planning the SLR
	2.2 Conducting the Literature Review

	3 Reporting and Analyzing the Results
	4 Future Challenges
	5 Threats to Validity
	6 Conclusions
	References

	Human-AI Co-creation: Evaluating the Impact of Large-Scale Text-to-Image Generative Models on the Creative Process
	1 Introduction
	2 Related Works
	2.1 Generative AI and Text-to-Image Generative Models
	2.2 Human-AI Co-creation

	3 User Study
	3.1 Goals
	3.2 Research Questions
	3.3 Participants
	3.4 Tasks and Procedure
	3.5 Results

	4 Discussion
	4.1 Limitations

	5 Conclusions and Future Work
	References

	Leveraging Large Language Models for End-User Website Generation
	1 Introduction
	2 Background and Related Works
	3 Methodology
	3.1 Iterative Refinement and Multiple Pages Generation
	3.2 Variety of Design Options
	3.3 Efficient Prompting Strategy
	3.4 Proof of Concept

	4 Conclusion
	References

	Internet of Things for End-Users
	Defining Trigger-Action Rules via Voice: A Novel Approach for End-User Development in the IoT
	1 Introduction
	2 Related Work
	2.1 End-User Development in the IoT
	2.2 Programming the IoT via Conversation

	3 Interviews
	3.1 Methodology
	3.2 Results

	4 IPAs Prototypes
	4.1 Prototype 1
	4.2 Prototype 2

	5 Usability Study
	5.1 Methods
	5.2 Results

	6 Discussion
	6.1 The Role of Artificial Intelligence and Recommendations
	6.2 Limitations and Future Works

	7 Conclusions
	References

	Language and Temporal Aspects: A Qualitative Study on Trigger Interpretation in Trigger-Action Rules
	1 Introduction
	1.1 Related Work

	2 The Study
	2.1 Participants
	2.2 Materials
	2.3 Methods
	2.4 Results from Thematic Analysis

	3 Discussion
	4 Conclusion
	References

	Understanding Concepts, Methods and Tools for End-User Control of Automations in Ecosystems of Smart Objects and Services
	1 Introduction
	2 Design of Trigger-Action Languages
	2.1 How to Represent Rule Structures
	2.2 Distinguishing Between Events and Conditions

	3 Tools for EUD
	3.1 Composition Paradigms
	3.2 Security
	3.3 Recommendations
	3.4 Debugging and Explainability of Automation Rules

	4 Evaluation
	4.1 Metrics
	4.2 Assessment of the Different Composition Paradigms
	4.3 User Experience

	5 Conclusions
	References

	Understanding User Needs in Smart Homes and How to Fulfil Them
	1 Introduction
	2 Related Work
	2.1 TAP Rules and Extensions
	2.2 Eliciting Users’ Preferences
	2.3 Research Objectives Definition

	3 The User Study
	3.1 Tasks
	3.2 Rule Template
	3.3 Participants
	3.4 Collected Data
	3.5 Limitations

	4 Analysis
	4.1 What Functionalities Do People Expect from a Smart Home System?
	4.2 Which TAP Operators and Structures are Necessary to Express These Behaviours?

	5 Discussion and Conclusions
	References

	Privacy, Security and Society
	Democratizing Cybersecurity in Smart Environments: Investigating the Mental Models of Novices and Experts
	1 Introduction
	2 Background and Related Work
	2.1 IoT and Cybersecurity Concerns
	2.2 End-User Development for Cybersecurity

	3 Method
	3.1 Participants
	3.2 Tasks
	3.3 Apparatus and Material
	3.4 Procedure
	3.5 Data Analysis

	4 Results
	5 Lessons Learned
	6 Conclusion and Future Work
	References

	On the User Perception of Security Risks of TAP Rules: A User Study
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 IFTTT Applet Dataset
	3.2 Inference Module
	3.3 Attack Generation Module

	4 User Study
	4.1 Participants and Study Design
	4.2 Data Collection
	4.3 Results

	5 Discussion
	6 Conclusion and Future Work
	References

	ConnectivityControl: Providing Smart Home Users with Real Privacy Configuration Options
	1 Introduction and Related Work
	2 System
	2.1 Connectivity Modes
	2.2 ConnectivityLabel
	2.3 Device Level
	2.4 Web Platform
	2.5 Architecture

	3 Prototypes
	4 Discussion and Future Work
	References

	Designing for a Sustainable Digital Transformation: The DEA Methodology
	1 Introduction
	2 Background and Related Work
	3 EUDability
	4 The DEA Methodology
	4.1 Phase 1: Context of Use Analysis
	4.2 Phase 2: User Requirements
	4.3 Phase 3: Selection
	4.4 Phase 4: Envisionment
	4.5 Phase 5: EUDability Evaluation

	5 Conclusion
	References

	Supporting End-User Development
	Exploring Visual Languages for Prototyping Interactive Behaviors for Tangible Virtual Reality
	1 Introduction
	2 Related Work
	2.1 Visual Programming Languages for Interactive Behaviors
	2.2 Inquiring Designers' Preferences

	3 Method
	3.1 Unreal Engine Blueprints Visual Scripting
	3.2 The TangibleVR Plugin and the XRoom Library
	3.3 Participants
	3.4 Procedure

	4 Results and Discussion
	5 Limitations
	6 Conclusions
	References

	How End Users Develop Point-and-Click Games
	1 Introduction
	2 Related Work
	3 The Game Dataset
	3.1 Scenes
	3.2 Rules
	3.3 Interactive Objects

	4 Discussion and Limitations
	5 Conclusion and Future Work
	References

	Programming with Minecraft Bedrock Up: Modeling, Coding, and Computational Concepts
	1 Introduction
	2 Related Work
	2.1 Introducing Programming and CT Using End-User Development
	2.2 Minecraft Studies
	2.3 Teaching Methods

	3 Research Method
	3.1 Research Question
	3.2 Research Design and Data Collection

	4 Demonstration of Teaching Method
	4.1 Designing with Building Blocks
	4.2 Building with Code Blocks
	4.3 General Programming and Computational Concepts

	5 Preliminary Results
	6 Discussion and Conclusions
	References

	Challenges of Enabling End-Users to Develop Systems with AI
	1 Introduction
	2 Challenges for Integrating AI in EUD
	2.1 Ideation
	2.2 Conceptualization
	2.3 Implementation
	2.4 Evaluation

	3 Discussion and Conclusion
	References

	EUD Strategy in the Education Field for Supporting Teachers in Creating Digital Courses
	1 Introduction
	2 How LMS Can Support Teachers in the Design of Courses
	2.1 A Case Study: Teaching Coding

	3 A Strategy for Recommending LOs
	3.1 Analysis of Prerequisites Between LOs

	4 EUD Strategies in Education
	4.1 Graphical Interface of the Chatbot
	4.2 How to Explain LO: Pull Out of the Black Box

	5 Acceptance and Intention to Use the Chatbot
	6 Conclusions
	References

	Correction to: Defining Trigger-Action Rules via Voice: A Novel Approach for End-User Development in the IoT
	Correction to: Chapter “Defining Trigger-Action Rules via Voice: A Novel Approach for End-User Development in the IoT” in: L. D. Spano et al. (Eds.): End-User Development, LNCS 13917, https://doi.org/10.1007/978-3-031-34433-6_5

	Author Index

