Check for
Updates

Style-Aware Sketch-to-Code Conversion for the Web

Tommaso Calo
Politecnico di Torino
Torino, Italy
tommaso.calo@polito.it

ABSTRACT

While sketching a graphical user interface (GUI) is a necessary
step towards the creation of a Web application, its transformation
into a coded GUI, with the proper styles, is still a tedious and time-
consuming task that a designer should perform. Recently, a set of
Machine Learning techniques has been applied to automatically
generate code from sketches to ease this part of the design process.
These techniques effectively convert the sketches into a skeleton
structure of the GUI but are not designed to consider the styles
to be applied to the generated HTML page. Moreover, having the
possibility to explore different styles, starting from a sketch, might
further support the designer in their work. In this paper, we move
the first steps to enable this opportunity by proposing a method
that allows the designer to input the sketch of the Web-based GUI
and select a reference style to be applied. Our method automatically
injects the reference styles into the sketch components and then
uses an automatic code generation technique to obtain the final
code. Preliminary experiments carried out with the navigation bar
component show the effectiveness of the proposed method.

CCS CONCEPTS

+ Human-centered computing — Graphical user interfaces;
Interface design prototyping; « Computing methodologies — Ma-
chine learning; Computer vision.

KEYWORDS

machine learning, web elements, user interface, convolutional neu-
ral network

ACM Reference Format:

Tommaso Calo and Luigi De Russis. 2022. Style-Aware Sketch-to-Code
Conversion for the Web. In Companion of the 2022 ACM SIGCHI Symposium
on Engineering Interactive Computing Systems (EICS *22 Companion), June
21-24, 2022, Sophia Antipolis, France. ACM, New York, NY, USA, 4 pages.
https://doi.org/10.1145/3531706.3536462

1 INTRODUCTION

When designers first start thinking about a graphical user interface
(GUI), they often sketch rough pictures of the screen layouts. Their
initial goal is to work on the overall layout and structure of the com-
ponents, rather than to refine the detailed look-and-feel. Designers

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

EICS °22 Companion, June 21-24, 2022, Sophia Antipolis, France

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9031-6/22/06...$15.00
https://doi.org/10.1145/3531706.3536462

44

Luigi De Russis
Politecnico di Torino
Torino, Italy
luigi.derussis@polito.it

use these sketches and other low-fidelity techniques to quickly
consider design ideas, later shifting to interface construction tools
or handing off the design to a programmer. However, transitioning
from those sketches to a coded interface with a suitable look-and-
feel is still a manual and time-consuming task [11, 12].

Supporting this transition is challenging due to the diversity
of sketches and the complexity of coded GUIs. Therefore, it is of
high interest for the research community to find methods and tools
able to support designers in the process of translating between
prototypes of the user interface. Several research projects, indeed,
have tried to automate this translation. For instance, Beltramelli [1]
proposed Pix2code, an end-to-end approach based on Convolutional
and Recurrent Neural Networks that allows the generation of code
from a mock-up screenshot taken as an input. Robinson [8], instead,
presented sketch2code, a system to automatically transform hand-
drawn sketches into coded GUIs. Both these works capture well
the backbone structure of the GUI and translate it into code, but
they are not designed to consider the aesthetics (e.g., colors and
shadows) to be applied to the generated interface, which remains a
manual and expensive task. Indeed, having the chance to explore
different styles, immediately after creating a sketch, might further
empower the designer in their creative work.

In this paper, we put forward a novel approach where we focus
on translating a sketch of a Web interface to the related code, letting
the designer also choose the style of the generated elements from
an arbitrarily chosen picture, such as artwork or an infographic. To
do so, we segment the input sketch to derive the single components
of the web-based interface and their positions. Then, for the derived
components, the designer can choose a reference style image which
is used to guide the choice of the style of the input sketch. Given
its complexity, the problem of style selection is split into two sub-
problems: a) the selection of colors, accomplished with a clustering-
based technique that extracts the most prominent colors in the
reference image, and b) a feature distance-based metric technique
for selecting the style of the text. For the purpose of this paper,
we experiment with this approach with a single component, the
navigation bar, widely present on many websites. Findings show
that our method is able to select effectively the style of the reference
template for the sketched component, showing good results in
the color and in the text style selection, which well resembles the
referenced style image.

2 BACKGROUND AND RELATED WORKS

Although the generation of computer programs is an active re-
search field, program generation from visual inputs (like sketches)
is still a relatively underexplored area. The problem of generat-
ing code from visual inputs is strictly related to the problem of
automatically reverse-engineering GUIs: reverse-engineering ap-
proaches are mainly applied to generate code from GUI mock-ups

https://doi.org/10.1145/3531706.3536462
https://doi.org/10.1145/3531706.3536462
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3531706.3536462&domain=pdf&date_stamp=2022-06-21

EICS ’22 Companion, June 21-24, 2022, Sophia Antipolis, France

v v,
7T
oy s o e B Y T flip / /
(
.| = [Random /) &
—= | crop / ‘—F/
”H - (
Resize
Data . .
Input augmentation ResNet Feature pyramid net
—>

1

@ |

OCR & Structure Prediction |

l

Travel

Home | Program | Authors | Attendees

=[] o]

Automatic Style Transfer

Tommaso Cald & Luigi De Russis

Class
subnet !

’
Class + box
subnets
\
Class + box | \
\
subnets \
\
Box

subnet

Box subnet
(bottom)

Class subnet

(top) Output

(3)

Figure 1: Method overview. (1) Starting from the sketch of a webpage, we perform segmentation of its interface. (2) We infer
the structure and the textual elements of the selected component (Section 3.1). (3) Style properties of the reference image are
extracted and injected into the structural properties of the sketch. Finally, a parser generates the final code along with the

rendering of the component (Sections 3.2 and 3.3).

or screenshots. Nguyen and Csallner [7], for example, developed a
method to reverse-engineering Android user interfaces from screen-
shots. However, their method heavily relies on heuristics and expert
knowledge to be implemented successfully, so its applicability is
restricted to a limited domain of interfaces.

Similar approaches have been used to create tools able to gen-
erate code from hand-drawn wireframes. These tools [5, 13] are
useful to designers who wish to quickly sketch and prototype pos-
sible UI layouts. A more complex version of this task is generating
code from complete Ul screenshots, as it requires that the system
handle the stylistic and structural variation present in real-world
app screens. Pix2code [1] was one of the first works attempting to
address the problem of GUI code generation from visual inputs by
leveraging machine learning to learn latent variables instead of en-
gineering complex heuristics. To exploit the graphical nature of the
input, Pix2code approaches the problem of converting screenshots
to code as an image captioning problem; the author implemented
first a Convolutional Neural Network (CNN) [4] performing unsu-
pervised feature learning, mapping the raw input image to a learned
representation, and then a Recurrent Neural Network (RNN) [9]
performing language modeling on the textual description associ-
ated with the input picture. In this latter step, at every iteration,
the screenshot of the interface is concatenated to the latent state
variable of the RNN, and the final output is a set token that can
be parsed into the final code of the interface. The Pix2code model
shows good generalization abilities even with out-of-domain sam-
ples. UI2Code [2] uses a similar architecture to generate a GUI
skeleton from a screenshot that describes the relative positioning
of GUI elements.

Another work very close to ours is Sketch2Code [8]. Sketch2Code
approaches the problem similarly to Pix2code, with the difference
that the author trains the model on a specially-prepared dataset
of GUI sketch images. In addition, the author does not implement

45

a language model and, instead, uses only a CNN to identify the
application components. Sketch2Code, then, represents every com-
ponent as a JavaScript Object Notation (JSON) structure, which is
then parsed by a GUI parser to create platform-specific code.

As depicted, none of these previous works focus their attention
on the automatic style customization of graphical elements. Our
approach aims at filling this gap by introducing an approach that
is similar to Sketch2Code in the fact that we start from sketches,
but differs from Pix2Code since we do not implement any language
model to perform the translation. Instead, we implement a CNN to
infer the structural properties of the sketched Web component. We
then use an automatic procedure to select the stylistic properties
from a freely chosen image and generate the final code with the
help of a parser.

3 METHODOLOGY

The task of generating the computer code of a styled interface from
a sketch can be split into three sub-problems. First, the problem
of understanding the sketch and inferring which are the present
elements and their positions. Second, for every component recog-
nized on the sketch, apply a specific style, given a reference style.
Finally, the last challenge is to generate the code of the resulting
styled component. The presented approach has been implemented
using Python 3.8. The neural network has been implemented using
PyTorch, the images processing with PIL and OpenCV, while the
data processing has been conducted with Pandas and Numpy.

3.1 Sketch Understanding

The task of understanding the sketch is a computer vision task that,
given the sketch of a Web-based GUI, consists of the detection and
identification of the included components (e.g., buttons, navbars,
etc.) and their relative position. For this task, we adopted the same
method of Sketch2Code [8], which uses RetinaNet [6], a popular

Style-Aware Sketch-to-Code Conversion for the Web

HOME |nEws|connetes Comaag\

EICS ’22 Companion, June 21-24, 2022, Sophia Antipolis, France

uS

Commettee

Contact

Figure 2: Results of the automatic style transfer algorithm and the UI reconstruction. The sketch above is converted into the
corresponding navbars having the styles of the images on the sides.

single-stage detector that is accurate and runs fast. RetinaNet uses
a feature pyramid network to efficiently detect objects at multi-
ple scales and introduces a new loss, the focal loss function, to
alleviate the problem of the extreme foreground-background class
imbalance. RetinaNet can simultaneously predict both the class
and the box position of the object under detection. For performing
this task, we use the same dataset presented in Sketch2Code. To
recognize written words in the sketch, in addition, we utilize an
OCR technique.

3.2 Automatic Style Transfer

Given that a Web component is a complex aggregation of multiple
visual elements, we split the problem of extracting the style from
the selected reference image into two sub-problems, color extraction
and text style selection.

Color Extraction. We extract the most dominant colors from
the selected reference image by using a median cut based clustering
technique, which works by sorting data of an arbitrary number of
dimensions into series of sets by recursively cutting each set of data
at the median point along the longest dimension, in our case the
color dimensions in the image (i.e., the RGB channels present in a
colored picture).

Text Style Selection. To select that text style that mostly resem-
bles the selected reference image we exploit the feature extraction
power of CNNs. In detail, given a list of preferred fonts, we pass
both the image and a sample sentence for each font through a pre-
trained Visual Geometry Group (VGG) neural network. We then
choose the font which minimizes the cosine similarity between the
two hidden representations. Mathematically, given the model S, a
reference image i € I and a set of fonts F, we choose the j-th style
f € F such that

1

where S(i) and S(f;) are the last layer activation values of the net-
work. The formula above ensures that the selected reference image
and the font have some visual similarity in common, or at least that
the similarity is maximal among the chosen fonts.

j=arg mjinS(i) * S(fj)

3.3 Code Generation and UI Reconstruction

Given the customized component obtained by the previous step, we
pass it again through a multi-headed VGG Convolutional Neural
Network [10] to infer its characteristics, both in structure and style.
The resulting object is then passed to an external parser, along with

46

the relative box positions obtained from the sketch understanding
phase (Section 3.1) to produce the final code representation of
the GUI The external parser maps the feature inferred from the
CNN to both CSS attributes for style features and structural HTML
attributes for content features. Finally, an algorithm embeds them
into a website template to generate the final interface.

4 PRELIMINARY RESULTS

To validate our method, our experiments focus mainly on testing
the correct prediction of the structure of the sketch with both syn-
thetic and real sketches, having correct visual feedback from the
extraction of dominant colors from the reference image, and validat-
ing the robustness of the choice of the text font that most resembles
the style of the reference image through various sentence samples.
Since the segmentation and reconstruction methods were adopted
from an already validated by Sketch2Code [8] and UICode [2] we
do not report the performance of those methods in this paper. The
experiments have been conducted with Google Colab.

Dataset. To test the effectiveness of the style transfer technique
we built a synthetic dataset of 3,000 navigation bars (navbars)
sketches, the navbars can have at most five items floating left and
three items floating right; the aim of the structure prediction model
is to infer the number of right and left items. In addition, we fine-
tuned the resulting model to 50 navbars sketches to evaluate the
performances of the model in a real scenario.

Measures. The performance of the method we propose relies on
two main objectives.

(1) The convolutional neural network must be able to classify
correctly the structural features of the sketched component
in order to parse them into code.

(2) The color extraction algorithm must give correct visual feed-
back on the capabilities of extracting the right colors and
choosing the right font given the reference image.

For the former, we evaluate the classification performances of the
CNN on the synthetic and on the real sketches dataset. So that, given
a sketch, the network must properly infer its content features. To
evaluate its performance, we use the accuracy of the prediction with
respect to the ground truth, which represents the items positions in
the sketched component. The accuracy is calculated as the number
of sketches for which the model correctly predicts all the structural
components of the sketch. For the second objective, we visually

EICS ’22 Companion, June 21-24, 2022, Sophia Antipolis, France

evaluate the performances of the color extraction algorithm in the
results we obtained, leaving for future works a more extended
evaluation with designers.

Experiments. To evaluate the performance of the CNN for the
sketch structure prediction, we split the synthetic sketch dataset into
2,500 train samples and 500 test samples, we trained the network
20, 30, and 50 epochs with pre-trained weights on ImageNet [3]
and we then tested fine-tuned the network on 50 real sketches, and
tested on 20.

Epochs | Synthetic Sketches | Real Sketches
20 0.898 0.678
30 0.909 0.685
50 0.912 0.691

Table 1: Accuracy in the predictions of the structural fea-
tures of the synthetic and real sketches.

As reported in Table 1, the performances of the convolutional
network in distinguishing the structural features of the sketched
component achieve very good results with a top 0.691 accuracy
over the real sketches set after 50 epochs training. Finally, the color
extraction algorithm has been evaluated on 10 reference images,
while the Text Style Selection algorithm has been evaluated on 5
different fonts. The resulting visualization shows encouraging per-
formance for the proposed method to capture the style as well as the
color of the reference image. In further work, we plan to conduct
an extensive user study to evaluate our results.

5 CONCLUSIONS AND FUTURE WORKS

This paper presents a method to support designers in generating
web pages from a sketch with the addition of style. Our approach
consists of three main parts: a deep learning architecture for seg-
mentation and classification, a style extraction procedure from a
reference image, and a parsing algorithm. Among its advantages,
it is fully integrated and easily adaptable for different sketches of
different domains. Then, to our knowledge, it is the first model that
allows the designer to personalize the style of the sketched com-
ponent automatically from a selected template. Lastly, it is highly
modular, as changing a single module does not require changing
the precedent components.

Our approach has some limitations that could eventually be ad-
dressed in future research. First of all, both the style and content
features of the components are handcrafted thus the model cannot
generalize out of the sketching specification. This is done to obtain
good results due to the complexity of style specifications in web
components. Future work is to implement techniques that allow
visual style transfer with language models instead of procedural
methods since language models can generalize out of handcrafted
features in this specific task, e.g., as shown by Beltramelli [1]. Sec-
ondly, the automatic style transfer technique is limited to predefined
stylistic properties, in our case, colors and fonts. In a real web de-
sign scenario, there are many more stylistic properties to take into
account, such as shadows, borders, and dynamics of responsive
elements. With such characteristics, it could become challenging
to apply our method extensively in real-world applications. Future

47

Tommaso Cald & Luigi De Russis

research should focus on automatic models that could handle such
complexity in an integrated fashion. Finally, the proposed method
needs to be tested with a diverse set of sketches and web elements,
as well as to be included in a tool for designers, where they can
select different styles to be applied to their own sketches. Such a
tool will, then, be evaluated in user studies to assess the usefulness
of the overall approach.

To conclude, sketch-to-code translation of user interfaces is
closer to being implemented in real-world applications, and our
work is a first attempt to allow an automatic stylization of GUI
elements leveraging machine learning techniques, to deliver a more
integrated approach, able to support designers in easing this time-
consuming part of their work.

REFERENCES

[1] Tony Beltramelli. 2018. Pix2code: Generating Code from a Graphical User
Interface Screenshot. In Proceedings of the ACM SIGCHI Symposium on Engi-
neering Interactive Computing Systems (Paris, France) (EICS ’18). Association
for Computing Machinery, New York, NY, USA, Article 3, 6 pages. https:
//doi.org/10.1145/3220134.3220135

Chunyang Chen, Ting Su, Guozhu Meng, Zhenchang Xing, and Yang Liu. 2018.

From UI Design Image to GUI Skeleton: A Neural Machine Translator to Bootstrap

Mobile GUI Implementation. In The 40th International Conference on Software

Engineering, Gothenburg, Sweden. ACM.

[3] JiaDeng, WeiDong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Imagenet:

A large-scale hierarchical image database. In 2009 IEEE conference on computer

vision and pattern recognition. leee, 248-255.

Andrej Karpathy, George Toderici, Sanketh Shetty, Thomas Leung, Rahul Suk-

thankar, and Li Fei-Fei. 2014. Large-scale Video Classification with Convolutional

Neural Networks. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition (CVPR).

[5] James A. Landay. 1996. SILK: Sketching Interfaces like Krazy. In Conference
Companion on Human Factors in Computing Systems (Vancouver, British Columbia,
Canada) (CHI *96). Association for Computing Machinery, New York, NY, USA,
398-399. https://doi.org/10.1145/257089.257396

[6] Tsung-YiLin, Priya Goyal, Ross B. Girshick, Kaiming He, and Piotr Dollar. 2020.
Focal Loss for Dense Object Detection. IEEE Transactions on Pattern Analysis &
Machine Intelligence 42, 02 (feb 2020), 318-327. https://doi.org/10.1109/TPAML
2018.2858826

[7] Tuan Anh Nguyen and Christoph Csallner. 2015. Reverse Engineering Mobile
Application User Interfaces with REMAUL In Proceedings of the 30th IEEE/ACM
International Conference on Automated Software Engineering (Lincoln, Nebraska)
(ASE ’15). IEEE Press, 248-259. https://doi.org/10.1109/ASE.2015.32

[8] Alex Robinson. 2019. Sketch2code: Generating a website from a paper mockup.
arXiv:1905.13750 [cs.CV]

[9] David E. Rumelhart and James L. McClelland. 1987. Learning Internal Representa-

tions by Error Propagation. 318-362.

Karen Simonyan and Andrew Zisserman. 2015. Very Deep Convolutional Net-

works for Large-Scale Image Recognition. arXiv:1409.1556 [cs.CV]

Sarah Suleri, Vinoth Pandian Sermuga Pandian, Svetlana Shishkovets, and

Matthias Jarke. 2019. Eve: A Sketch-Based Software Prototyping Workbench.

In Extended Abstracts of the 2019 CHI Conference on Human Factors in Comput-

ing Systems (Glasgow, Scotland Uk) (CHI EA ’19). Association for Computing

Machinery, New York, NY, USA, 1-6. https://doi.org/10.1145/3290607.3312994

Miriam Walker, Leila Takayama, and James A. Landay. 2002. High-Fidelity or Low-

Fidelity, Paper or Computer? Choosing Attributes when Testing Web Prototypes.

Proceedings of the Human Factors and Ergonomics Society Annual Meeting 46, 5

(2002), 661-665. https://doi.org/10.1177/154193120204600513

Benjamin Wilkins. 2017. Airbnb Sketching Interfaces. https://airbnb.design/

sketching-interfaces. Accessed: 2022-01-10.

—
s

4

[12

(13]

https://doi.org/10.1145/3220134.3220135
https://doi.org/10.1145/3220134.3220135
https://doi.org/10.1145/257089.257396
https://doi.org/10.1109/TPAMI.2018.2858826
https://doi.org/10.1109/TPAMI.2018.2858826
https://doi.org/10.1109/ASE.2015.32
https://arxiv.org/abs/1905.13750
https://arxiv.org/abs/1409.1556
https://doi.org/10.1145/3290607.3312994
https://doi.org/10.1177/154193120204600513
https://airbnb.design/sketching-interfaces
https://airbnb.design/sketching-interfaces

	Abstract
	1 Introduction
	2 Background and Related Works
	3 Methodology
	3.1 Sketch Understanding
	3.2 Automatic Style Transfer
	3.3 Code Generation and UI Reconstruction

	4 Preliminary Results
	5 Conclusions and Future Works
	References

