Check for
Updates

Creating Dynamic Prototypes from Web Page Sketches

Tommaso Calo
Politecnico di Torino
Torino, Italy
tommaso.calo@polito.it

Abstract

While web designers draw user interface sketches as a first
step toward creating a Web application, transforming those
sketches into a prototypical coded interface is still a manual
and time-consuming task. Recently, researchers focused on
easing this part of the design process by applying machine
learning techniques to generate code from sketches auto-
matically. These methods effectively convert a sketch into
a skeleton structure of the web page but are not designed
to deal with dynamic behaviors of the page, such as links,
buttons, or dropdowns menu. Indeed, to our knowledge, they
only allow the creation of static prototypes. In this paper, we
move the first steps to support the creation of dynamic proto-
types from sketches. We introduce both a set of symbols that
a designer can use on their sketches to model dynamic be-
haviors and the related implementation to generate dynamic
prototypes. Finally, we test our method on a few sketched
components to assess the suitability of the approach.

CCS Concepts: - Human-centered computing — Graph-
ical user interfaces; Interface design prototyping; » Com-
puting methodologies — Machine learning; Computer
vision.

Keywords: machine learning, web elements, user interface,
convolutional neural network

ACM Reference Format:

Tommaso Calo and Luigi De Russis. 2022. Creating Dynamic Pro-
totypes from Web Page Sketches. In Proceedings of the 1st ACM
SIGPLAN International Workshop on Programming Abstractions and
Interactive Notations, Tools, and Environments (PAINT °22), December
05, 2022, Auckland, New Zealand. ACM, New York, NY, USA, 6 pages.
https://doi.org/10.1145/3563836.3568724

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
PAINT °22, December 05, 2022, Auckland, New Zealand

© 2022 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 978-1-4503-9910-4/22/12...$15.00
https://doi.org/10.1145/3563836.3568724

20

Luigi De Russis
Politecnico di Torino
Torino, Italy
luigi.derussis@polito.it

1 Introduction

Designers of web sites typically go through a process of
progressive refinement [1]. They tend to think about the
larger picture, such as the overall site layout, at first, and
then progressively focus on finer details, such as the specific
look of page elements, typefaces, and colors.

The design process often includes rapid exploration early
on, with designers creating many low-fidelity sketches on
paper. There are several benefits of sketching during this
phase of design. Sketches allow the designer to focus on basic
structural issues instead of unimportant details. Sketching
is quick, so designers can rapidly explore different ideas
and iterate on those. In addition, user studies using rough
prototypes tend to find the same usability problems as do
tests with more finished prototypes [2, 3]. However, tran-
sitioning from those sketches to a coded interface with a
suitable look-and-feel is still a manual and time-consuming
task [4, 5].

Supporting this transition is challenging due to the diver-
sity of sketches and the complexity of coded graphical user
interfaces (GUIs). The research community, therefore, has a
high interest to find methods and tools able to support de-
signers in the process of moving between prototypes of the
user interface. Several research projects, indeed, have tried
to automate this translation. For instance, Beltramelli [6]
proposed Pix2code, an end-to-end approach based on Con-
volutional and Recurrent Neural Networks that allows the
generation of code from a mock-up screenshot taken as an
input. Robinson [7], instead, presented sketch2code, a system
to automatically transform hand-drawn sketches into coded
GUIs. Both these works capture well the overall structure
of the user interface and translate it into code, but they are
not designed to consider the dynamic behavior (e.g., links
between pages, dropdown menus) of the generated interface,
which remains a manual and expensive task to be applied.
Indeed, the chance to embed the dynamic behavior directly
in the sketch might further empower the designers in their
creative work.

In this paper, we put forward a novel approach where we
focus on translating a sketch of a Web interface to the related
code, allowing the designer to specify the dynamic behavior
of the sketched elements directly in the sketch. To do so, we
introduce a set of symbols that a designer can use on their
sketches to model such dynamic behaviors. The symbols are
in some cases well established in Web visual languages, e.g.,
the down-facing arrow to indicate a drop-down menu, while

https://orcid.org/0000-0002-3200-2348
https://orcid.org/0000-0001-7647-6652
https://doi.org/10.1145/3563836.3568724
https://doi.org/10.1145/3563836.3568724
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3563836.3568724&domain=pdf&date_stamp=2022-12-01

PAINT ’22, December 05, 2022, Auckland, New Zealand

in other cases are introduced from scratch. In our proposed
method, we segment the input sketch to derive the single
components of the web-based interface and their positions;
then, for each component, we run a Convolutional Neural
Network (CNN) to classify its structural properties and iden-
tify the relative position and type of the symbols used to
model dynamic behaviors. Finally, a parser elaborates the in-
formation derived by the network to generate the backbone
code of the interface. We tested the method on a subset of
the presented symbols to evaluate its effectiveness.

2 Related Work
2.1 Automatic Generation of Code from Sketches

Although the generation of computer programs is an ac-
tive research field, program generation from visual inputs
(like sketches) is a relatively under-explored area. The prob-
lem of generating code from visual inputs is strictly related
to the problem of automatically reverse-engineering GUIs:
reverse-engineering approaches are mainly applied to gen-
erate code from GUI mock-ups or screenshots. Nguyen and
Csallner [11], for instance, proposed a method to reverse-
engineering Android user interfaces from their screenshots.
However, their method heavily relies on heuristics and expert
knowledge to be implemented successfully, so its applica-
bility is restricted to a limited domain of interfaces. Similar
approaches have been used to create tools able to generate
code from hand-drawn wireframes. These tools [12, 13] are
useful for designers who wish to quickly sketch and proto-
type possible interface layouts.

A more complex version of this task is generating code
from complete screenshots, as it requires that the system
handle the stylistic and structural variation present in real-
world app screens. Pix2code [6] was one of the first works
attempting to address the problem of GUI code generation
from visual inputs by leveraging machine learning to learn
latent variables instead of engineering complex heuristics.
To exploit the graphical nature of the input, Pix2code ap-
proaches the problem of converting screenshots to code as
an image captioning problem. Another work very close to
ours is Sketch2Code [17]. Sketch2Code approaches the prob-
lem similarly to Pix2code, with the difference that the au-
thor trains the model on a specially-prepared dataset of GUI
sketch images.

As depicted, none of these previous works focus their
attention on the behavior modeling of prototypes. Our ap-
proach aims at filling this gap by introducing a method sim-
ilar to Sketch2Code since we start from sketches and we
implement a CNN to infer the structural properties of the
sketched Web component, but we consider and detect the
symbols which models dynamic behaviors. We then use a
parsing procedure to generate the backbone code of the pro-
totype, dynamic behaviours included.

21

Calo and De Russis

2.2 Behavior Specification

In the comparative study by Silva et al. [22] behavior spec-
ification is defined as the ability to add dynamic behaviors
to prototypes. “Behavior” is described as a set of states that
prototypes can reach by the means of transitions between
states. Very few prototyping tools model the dynamic be-
havior of the prototype, the majority allow to create static
mock-ups, only. As described in [22], the main methods to
specify the behavior of the prototype are setting hotspots on
images, and events handling on widgets. Hotspots are areas
highlighted on top of the sketch of the prototype to capture
events triggered by the user [8]. Designers need to create
one hotspot for each part of the interface they want to make
interactive. The problem with this method is that hotspots
are associated with graphical areas that are not semantically
linked with the graphical element represented in the image,
but only on the coordinates of the hotspot.

Wireframe tools use widgets to build the interface [9] and
they model the dynamic behavior of the prototype directly
on the widgets with event handlers. The event handlers usu-
ally specify an action required to trigger the event and the
behavior the event triggers. Balsamiq [15], ActiveStory En-
hanced [14], SILK [13] and DENIM [16], are examples of
tools supporting wireframe interactions. Tools like AppS-
ketcher [18] or JustInMind [19] allow to specify conditions,
edit properties, or use variables; Appery.io [20] and ScreenAr-
chitect [10] allow also to program code.

Our approach models the dynamic behavior of the GUI di-
rectly from the sketch itself with the usage of a set of specific
symbols. It supports wireframe interactions without the need
of adding widgets or hotspots, in a later stage. Moreover, to
our knowledge, the proposed method is the first attempt to
model behavior specification directly from a sketch by using
convolutional neural networks.

3 Method

In this section, we present the method to automatically gen-
erate code from sketches, along with the novel introduction
of a first set of symbols and the related procedure to model
dynamic behavior.

3.1

To model the dynamic behavior of the prototype, we in-
troduce a set of symbols that represent different dynamics
behaviors. Such symbols are supposed to be drawn directly
on the sketch and are chosen based on the fundamental dy-
namic properties emerged in literature, i.e., from [13, 22].
The following set is chosen to demonstrate the applicability
of the model, and will be expanded in future works to model
a wider range of dynamic behaviors:

Modeling Dynamic Behavior

Default Selected Element indicates the item that is se-
lected by default in the sketched interface. An example

Creating Dynamic Prototypes from Web Page Sketches

PAINT ’22, December 05, 2022, Auckland, New Zealand

SYMBOL FUNCTION

MOTIVATION

USAGE

EXAMPLE

&

Default selected element.

The symbol has been chosen
for its visual similarity with
an anchor.

The symbol must be drawn
upon the element to be
selected by default.

HOME |\

:

The symbol has been chosen

—

Link

The symbol has been chosen
for its visual meaning of
motion.

above the button and should
be followed by the page
unique number to which the

\7 because it is the standard The symbol must be drawn SERVICES \
Dropdown menu representation of the below the element that v
dropdown menu in activates the menu RENT
literature.
The number must be written
. NOTE: the symbol can be any | inside a square in the upper 5 36
Page Indicator number. left of the sketched page Hor’}[{ PROGRe
that it uniquely identifies
The symbol must be drawn g -

NEWS

1

link points to.

Figure 1. The proposed set of symbols to model dynamic behavior in sketch prototypes: The default selected element symbol is
used to model the item that is selected by default in the given interface; the dropdown menu symbol indicates that the element
opens a dropdown menu; the page indicator symbol is used to link together different page sketched by the designer; the link

symbols, links a sketched element into an indicated page.

of such a item is the “Home” button in an horizontal
navigation bar of a web application.

Dropdown Menu indicates that the element opens a
dropdown menu.

Page Indicator uniquely represents the sketched inter-
face, e.g., the page destination of a link.

Link represents the connection between the sketched
element and an indicated page.

Figure 1 reports the four introduced symbols, along with
their functions, the motivations behind the chosen represen-
tations, their usage, and an example for each symbol. The
figure could ease the understanding of how the symbols are
implemented in a real sketch of a GUL

3.2 Prototype’s Interface Generation

The task of generating the code of an interface from a sketch
can be split into three sub-problems.

First, the problem of segmenting the sketch by semantic
elements, e.g, navbar, list, carousel (Section 3.2.1). Secondly,
for each given semantic component, the problem is to un-
derstand the sketch’s structural properties, and infer which
are the present symbolic elements, and their positions (Sec-
tion 3.2.2). Finally, the last challenge is to generate the code of
the resulting component, taking into account the expressed
dynamic behavior (Section 3.2.3).

The presented approach has been implemented using
Python 3.8. The neural network has been implemented using

22

PyTorch, the images processing with PIL and OpenCV, while
the data processing has been conducted with Pandas and
Numpy.

3.2.1 Sketch Understanding. Understanding the sketch
is a computer vision task that, given the sketch of a Web-
based interface, consists of the detection and identification
of the included components (e.g., buttons, navbars, etc.) and
their relative position.

For this task, we adopted the same method of Sketch2Code
[17], which uses RetinaNet [21], a popular single-stage de-
tector that is accurate and runs fast. RetinaNet can simulta-
neously predict both the class and the box position of the
object under detection. Figure 2 (1) displays the network
architecture.

3.2.2 Components Understanding. Given the segmented
sketch of the user interface, we predict the structural proper-
ties of the components, along with the presence of symbols
to model dynamic behavior.

In detail, as depicted in Figure 2 (2), we implement a convo-
lutional neural network, specific for each component, trained
to classify the structural properties of the sketched compo-
nent, e.g., in the case of a navbar, the number of elements
floating left and right. We use the same network to predict
which (symbol type) and where (in which element) symbols

PAINT ’22, December 05, 2022, Auckland, New Zealand

are present. To link multiple pages, we used the page indi-
cator, i.e., a unique number, written on the top right of the
sketched page.

3.2.3 Code Generation. Given the structural properties
of the component, along with the type and the position of
symbols present to model the dynamic behavior, we proceed
to generate the code of the backbone using a parsing function.
Figure 2 (3), shows the final rendered component.

4 Experiments

We want to verify that our method correctly generates the
navbar’s code with the inserted dynamic behavior, as well
as the structural properties of the sketch, and can correctly
recognize the symbols that model such a dynamic behavior.
Due to the unavailability of a dataset of sketched Web in-
terfaces, we train our method over a synthetic dataset and
then we fine-tune it over a collection of 50 real sketched
navigation bars (navbars). Since the segmentation and re-
construction methods were adopted and already validated
by Sketch2Code [7] and UICode [23], we do not report the
performance of those methods in the paper.

Dataset. To test the effectiveness of the method we built a
synthetic dataset of 3,000 navbars’ sketches. Each navbar can
have at most five items floating left and three items floating
right. Regarding the symbols to model the dynamic behav-
iors, we had only one default selected element per navbar,
multiple links, multiple dropdown menus, and a unique page
indicator. The aim of the structure prediction model is to
infer the number of rights and left items. In addition, we
fine-tuned the resulting model to 500 real-sketched navbars
to evaluate the performances of the model in a realistic sce-
nario. The real sketches dataset presents more variability of
the synthetic dataset, with hand drawn lines, overlapping
and mispositioned elements.

Measures. The Convolutional Neural Network (CNN)
must be able to classify correctly the structural features as
well as the type and position of the symbols in the sketched
component in order to parse them into code. We utilize ac-
curacy as the main measure of performance.

Experiments. To evaluate the performance of the CNN for
the sketch structure prediction, we split the synthetic sketch
dataset into 2,500 train samples and 500 test samples, we
trained the network 20, 30, and 50 epochs with pre-trained
weights on ImageNet [24] and we then fine-tuned the net-
work on 400 real sketches, and tested on 100.

As reported in Table 1, the performances of the convolu-
tional network in distinguishing the structural features of
the sketched component achieve very good results with a top
0.982 accuracy over the real sketches set after 50 epochs of
training, meaning that the network can effectively recognize
the structure of the sketched component, the structure can

23

Calo and De Russis

Epochs | Synthetic Sketches | Real Sketches
20 0.991 0.968
30 0.995 0.973
50 0.998 0.982

Table 1. Accuracy Results over Synthetic and Real Sketches
Datasets

be parsed directly to code, making this technique promising
for real world applications.

Default Dropdown Page
Dataset Selected P Link &
Menu Number
Element
Synthetic
Sketches 0.995 0.996 0.989 | 0.992
Real Sketches | 0.987 0.991 0.972 | 0.989
Table 2. Accuracy Results for each symbol

In addition, to further understand the quantitative results
of our method, in Table 2 we analyzed the performance of
the network in recognizing each of the proposed symbols.
The analysis would motivate us to change some symbols’
designs in order to achieve higher accuracy.

As reported in Table 2, the “Page Number” is the symbol
most easily recognized by the classifier, while “Dropdown
Menu” and “Default Selected Elements” shows comparable
results. The least recognized symbol is “Links”, probably
because in a few samples it overlaps with text. In further
work, we may improve its design or position specifications
to achieve better results.

5 Conclusion and Future Work

This paper presents a method which can support designers
in generating web pages from a sketch, while describing the
dynamic behaviors of the pages. Our approach consists of
four main parts: a set of symbols to use in sketched web
pages; a deep learning architecture for segmentation of the
sketched pages into components; a classification algorithm
that infers the structural properties of the components and
recognizes the symbols that model dynamic behavior; and
a parsing algorithm that takes as input the information ob-
tained by the network to generate the final code. Among
its advantages, it is fully integrated and easily adaptable for
different sketches in various domains. To our knowledge, it
is the first method that may allow designers to model the
dynamic behavior of the sketched directly in sketch-to-code
translation algorithms, while using deep learning techniques.

The proposed approach has some limitations that could
eventually be addressed in future research. First of all, the
structural content features of the components are hand-
crafted, thus the model cannot generalize out of the sketching

Creating Dynamic Prototypes from Web Page Sketches

M

Random
flip

| -{ [Random
crop

Resize

i
\

Data

. ResNet
augmentannn

Input Feature pyramid net

—> v —»bL 2 ~2 —T
(HOME | PROGRAN \F)WDVS\WNWQ \wa«m, ‘
| \ ol

G

£V

7] [Class + box ’
subnets

PAINT ’22, December 05, 2022, Auckland, New Zealand

Class + box
subnets /S

Class
subnet

\

Class + box | \
\
subnets \

|
1y

Box
subnet

Box subnet
(bottom)

Class subnet
(top)

Output

I Structure & Symbols Prediction [

A
»| Code parser

Program

Home

Authors

Attendees

Travel

Info | Contacts | Us

Figure 2. Method overview. Starting one or multiple sketches of interfaces, in (1) we perform a segmentation of the single
sketch in sub-components. Then, for each component, we use a convolutional neural network to infer its structural and
dynamic properties (2). Eventually, with the help of a parser, we translate the predicted properties into the backbone code of
the sketched component. (3) shows the rendered Web element stemming from the entire process.

specification. This is done to obtain good results due to the
complexity of structural specifications in web components.
Future work will include the implementation of techniques
that allow code generation with language models instead
of procedural methods, since language models can general-
ize out of handcrafted features in this specific task, e.g., as
shown by Beltramelli [6]. Secondly, the modeling of dynamic
behavior is limited to a subset of the dynamical behavior
of a real web application. Future research should focus on
enhancing the capabilities of our method to model a wider
range of dynamic behaviors. Finally, the depicted method
needs to be tested with a diverse set of sketches, hand-drawn
symbols, and web elements, as well as to be included in a
tool for designers. Such a tool will, then, be evaluated in user
studies to assess the usefulness of the overall approach.

To conclude, sketch-to-code translation of user interfaces
is closer to being implemented in real-world applications,
and our work moves the first steps towards allowing design-
ers to model the dynamic behavior of web interface elements.
We do so by leveraging machine learning techniques, to de-
liver a more integrated approach able to support designers
in easing this time-consuming part of their work.

References

[1] Newman, MW. and J.A. Landay. Sitemaps, Storyboards, and Specifi-
cations: A Sketch of Web Site Design Practice. In Proceedings of DIS
2000: Designing Interactive Systems. New York, New York. pp. 263-274,
August 2000.

Hong, J.I, F.C. Li, J. Lin, and J.A. Landay. End-User Perceptions of
Formal and Informal Representations of Web Sites. In Proceedings of
Human Factors in Computing Systems: CHI 2001 Extended Abstracts.
Seattle, WA. pp. 385- 386, March 31-April 5, 2001.

24

[3] Virzi, RA., J.L. Sokolov, and D. Karis. Usability Problem Identification
Using Both Low- and High-Fidelity Prototypes. In Proceedings of Hu-
man Factors in Computing Systems: CHI "96. Vancouver, BC, Canada.
pp- 236-243, April 13-18, 1996.

Sarah Suleri, Vinoth Pandian Sermuga Pandian, Svetlana Shishkovets,

and Matthias Jarke. 2019. Eve: A Sketch-Based Software Prototyping

Workbench. In Extended Abstracts of the 2019 CHI Conference on

Human Factors in Computing Systems (Glasgow, Scotland UK) (CHI

EA ’19). Association for Computing Machinery, New York, NY, USA,

1-6.

Fidelity or Low-Fidelity, Paper or Computer? Choosing Attributes

when Testing Web Prototypes. Proceedings of the Human Factors and

Ergonomics Society Annual Meeting 46, 5 (2002), 661-665.

Tony Beltramelli. 2018. Pix2code: Generating Code from a Graphical

User Interface Screenshot. In Proceedings of the ACM SIGCHI Sympo-

sium on Engineering Interactive Computing Systems (Paris, France)

(EICS "18). Association for Computing Machinery, New York, NY, USA,

Article 3, 6 pages.

Alex Robinson. 2019. Sketch2code: Generating a website from a paper

mockup. arXiv:1905.13750 [cs.CV]

Marvel. https://marvelapp.com/. [Accessed 20 08 2022]

Pidoco. https://pidoco.com/en. [Accessed 20 08 2022]

Screen Architect. https://www.screenarchitect.com. [Accessed 20 08

2022]

Tuan Anh Nguyen and Christoph Csallner. 2015. Reverse Engineering

Mobile Application User Interfaces with REMAUL. In Proceedings of

the 30th IEEE/ACM International Conference on Automated Software

Engineering (Lincoln, Nebraska) (ASE ’15). IEEE Press, 248-259.

[12] Benjamin Wilkins. 2017. Airbnb Sketching
https://airbnb.design/sketching-interfaces.

[13] James A. Landay. 1996. SILK: Sketching Interfaces like Krazy. In Confer-
ence Companion on Human Factors in Computing Systems (Vancou-
ver, British Columbia, Canada) (CHI ’96). Association for Computing
Machinery, New York, NY, USA, 398-399.

[14] Hosseini-Khayat, Ali Ghanam, Yaser Park, Shelly Maurer, Frank. (2009).
ActiveStory Enhanced: Low-Fidelity Prototyping and Wizard of Oz Us-
ability Testing Tool. Lecture Notes in Business Information Processing.
31. 257-258.

[4

—

(5

—

[6

—

[7

—

(8]
(9]
(10]

[11]

Interfaces.

PAINT ’22, December 05, 2022, Auckland, New Zealand Calo and De Russis

[15] Balsamiq. https://balsamiq.com. [Accessed 20 03 2022] [22] Silva, Thiago Hak, Jean-Luc Winckler, Marco Nicolas, Olivier. (2017).
[16] Lin, James Newman, Mark Hong, Jason Landay, James. (2002). DENIM: A Comparative Study of Milestones for Featuring GUI Prototyping
An Informal Sketch-based Tool for Early Stage Web Design. Tools. Journal of Software Engineering and Applications. 10. 564-589.

[17] Alex Robinson. 2019. Sketch2code: Generating a website from a paper 10.4236/jsea.2017.106031.
mockup. [23] Chunyang Chen, Ting Su, Guozhu Meng, Zhenchang Xing, and Yang

[18] AppScketcher. https://www.uxplaza.com/appsketcher. [Accessed 20 Liu. 2018. From UI Design Image to GUI Skeleton: A Neural Machine
08 2022] Translator to Bootstrap Mobile GUI Implementation. In The 40th Inter-

[19] JustInMind. https://www.justinmind.com. [Accessed 20 08 2022] national Conference on Software Engineering, Gothenburg, Sweden.

[20] Appery. https://appery.io. [Accessed 20 08 2022] ACM.

[21] Tsung-Yi Lin, Priya Goyal, Ross B. Girshick, Kaiming He, and Piotr [24] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei.
Dollar. 2020. Focal Loss for Dense Object Detection. IEEE Transactions 2009. Imagenet: A large-scale hierarchical image database. In 2009
on Pattern Analysis & Machine Intelligence 42, 02 (feb 2020), 318-327. IEEE conference on computer vision and pattern recognition. IEEE,

248-255

25

	Abstract
	1 Introduction
	2 Related Work
	2.1 Automatic Generation of Code from Sketches
	2.2 Behavior Specification

	3 Method
	3.1 Modeling Dynamic Behavior
	3.2 Prototype's Interface Generation

	4 Experiments
	5 Conclusion and Future Work
	References

