
Leveraging Large Language Models for End-User
Website Generation

Tommaso Calò[0000−0002−3200−2348] and Luigi De Russis[0000−0001−7647−6652]

Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
{tommaso.calo, luigi.derussis}@polito.it

Abstract. This work introduces an innovative approach that harnesses
the power of large language models (LLMs) to facilitate the creation of
websites by end users through natural language specifications. Our key
contribution lies in a user-oriented method that utilizes prompt engineer-
ing, compelling the LLM response to adhere to a specific template, which
in turn enables direct parsing of the model’s responses, allowing users to
focus on refining the generated website without concerning themselves
with the underlying code. The engineered prompt ensures model effi-
ciency by implementing a modification strategy that preserves context
and tokens generated in the LLM responses, updating only specific parts
of the code rather than rewriting the entire document, thereby mini-
mizing unnecessary code revisions. Moreover, our approach empowers
LLMs to generate multiple documents, augmenting the user experience.
We showcase a proof-of-concept implementation where users submit tex-
tual descriptions of their desired website features, prompting the LLM
to produce corresponding HTML and CSS code. This paper underscores
the potential of our approach to democratize web development and en-
hance its accessibility for non-technical users. Future research will focus
on conducting user studies to ascertain the efficacy of our method within
existing low-code/no-code platforms, ultimately extending its benefits to
a broader audience.

1 Introduction

The proliferation of the Internet has fundamentally changed the way we live,
work, and communicate, leading to a substantial demand for website develop-
ment. Traditional website development typically necessitates technical expertise,
which can be a barrier for many individuals without these skills. In response, re-
searchers and practitioners have sought to develop tools and approaches to enable
end-users to create websites without coding. End-User Development (EUD) [2,
21, 16, 8] has emerged as a popular approach to enable non-technical users to
create websites [13, 17]. Low-code/no-code tools have been developed to support
EUD by offering increased ease of use and flexibility [23, 26, 7, 9, 28]. These tools
enable users to create websites by visually arranging pre-built components, such
as buttons, images, and forms, with the underlying code generated automatically.
Although these tools have simplified website development, they can be limited



2 T. Calò and L. De Russis

in flexibility and may be challenging to use for more complex websites [1, 11, 25,
12]. One of the primary limitations of low-code/no-code tools is the steep learn-
ing curve associated with their usage. Users often need to invest significant time
learning how to use these tools effectively, which can be a substantial barrier for
non-technical users [18].

Recently, there has been growing interest in leveraging artificial intelligence
(AI) to enable end users to create websites [22]. Large language models (LLMs)
have emerged as a promising approach for generating code based on natural lan-
guage descriptions provided by end users. LLMs are trained on massive amounts
of data and can generate text that closely matches human language, making them
well-suited for generating code from natural language input [4, 29, 6]. However,
these approaches have certain limitations, such as not allowing users to refine the
output of the LLM with subsequent input or generating multiple pages. These
limitations can hinder users from creating websites tailored to their specific needs
and preferences.

To address these limitations, we propose a novel approach for leveraging
LLMs for EUD using natural language processing to generate code from speci-
fications. This approach is familiar and intuitive for most people, as it utilizes
natural language communication [19, 30]. Our method is centered around prompt
engineering, which constrains the LLM response to follow a predefined template,
facilitating the direct parsing of the model’s output. This enables users to con-
centrate on refining their generated websites without the need to delve into the
underlying code. Our technique allows users to iteratively adjust the LLM out-
put and create multiple pages, offering greater adaptability and command over
the generated code. With minimal technical expertise required, our approach
bypasses the necessity to master programming language syntax, structure, or
web development tools, considerably reducing the learning curve typically as-
sociated with website development. In addition, the approach incorporates an
efficient prompting strategy to interact with external LLM APIs [15], which en-
ables generating code that benefits from a larger context window1 thus enabling
refinements that reference earlier parts of the conversation and earlier generated
documents. By maintaining a longer context, users can create more complex
websites that refer to multiple pages, enhancing the overall functionality and
richness of the generated content [15]. The engineered prompt ensures model
efficiency by implementing a modification strategy that preserves context and
tokens generated in the LLM responses, updating only specific parts of the code
rather than rewriting the entire document, thereby minimizing unnecessary code
revisions. This method also results in fewer tokens being generated, leading to
cost savings, as the cost of API usage is related to the number of generated
tokens.

To demonstrate the feasibility of this approach, we present a proof-of-concept
implementation where users input textual descriptions of their website require-

1 The context window refers to the amount of information an LLM can process at
once. Preserving context is essential for interactions with LLMs, as it allows user to
reference earlier parts of the conversation within the same generation process.



Leveraging Large Language Models for End-User Website Generation 3

ments, and the LLM processes this input, generating HTML and CSS code to
construct the desired website. This proof-of-concept showcases LLMs’ potential
in automating website development, reducing the time and effort required. In
summary, our work builds on the emerging areas of EUD and LLMs, aiming to
address existing limitations by empowering users to refine the LLM output with
subsequent input and generate multiple pages. Our approach has the potential to
democratize website development and significantly help bridge the digital divide.

2 Background and Related Works

End-user development (EUD) has attracted significant attention in recent years,
as researchers and practitioners strive to make website development more ac-
cessible to non-technical users [2, 13, 16, 8, 27, 21]. Low-code/no-code tools have
emerged as a leading approach to EUD, offering users the ability to create web-
sites without coding expertise [23, 26, 7, 1, 9, 28]. Despite their popularity, these
tools often present limited flexibility and can be challenging to use for developing
complex websites [18, 11, 25, 12].

Interestingly, an early prototype of an AI-assisted EUD solution was pre-
sented to the AI and HCI community over 50 years ago, referred to as retrieval
by reformulation, and had a system called RABBIT as its primary example [24].
This work, although significant, did not gain widespread adoption outside of the
research community. Nonetheless, it is important to acknowledge its contribution
to the field as it laid the foundation for future developments.

In recent times, large language models (LLMs) have been identified as a
promising avenue for EUD [4, 29]. LLMs, trained on extensive data, can gener-
ate natural language text that closely resembles human language. This capability
makes them well-suited for generating code based on textual descriptions pro-
vided by end-users.

Several studies have explored the use of LLMs for EUD. Huang et al. [10],
for example, proposed a framework that automatically generates website lay-
outs from textual descriptions using LLMs. Chen et al. [6], instead, developed a
method for generating code snippets from natural language queries using LLMs.
These studies underscore the potential of LLMs for EUD and provide a strong
foundation for our research. Our work is unique in its focus on a user-oriented
approach that allows end users to refine the LLM output with subsequent input
iteratively. This feature empowers users to have greater control over the gener-
ated code, ensuring it meets their specific requirements. This refinement process
is a critical aspect that differentiates our work from earlier studies on EUD us-
ing LLMs. While previous research in EUD using LLMs primarily focused on
generating single pages, our work expands this research scope by enabling LLMs
to generate multiple pages. It highlights the importance of designing AI systems
that ensure high control and high automation, qualities essential for systems
interacting with humans.

In addition to the existing body of research on EUD and LLMs, it is es-
sential to consider the relationship between our approach and AI tools that



4 T. Calò and L. De Russis

convert hand-drawn website designs into complete systems (e.g., [3, 5]). These
tools provide an intuitive way for non-technical users to create websites without
requiring knowledge of specific website structures and terms. In contrast, our
LLM-based approach might still necessitate that users are familiar with tech-
nical terms to effectively communicate their design intentions, as illustrated by
the use of “navbar” in Figure 3.

AI services that generate websites based on drawings can offer a more accessi-
ble alternative for users who lack knowledge of website terminology. However, our
proposed LLM-based approach presents several advantages. By utilizing natural
language input, the method encourages iterative refinement of generated code,
providing users with greater control and customization options. Moreover, our
approach can potentially accommodate a wider range of user preferences and
design complexities, as it is not limited to interpreting visual representations.

That said, a discussion comparing the intuitiveness and accessibility of our
LLM-based approach and AI tools that convert drawings into websites is war-
ranted. Future research could explore ways to combine the strengths of both
methods, creating a more comprehensive and user-friendly solution for EUD.
Integrating hand-drawn elements with natural language input could potentially
lead to a more intuitive and powerful tool that caters to users with varying levels
of technical knowledge and design skills.

To conclude, our research makes a contribution to the EUD and LLM do-
mains by presenting an user-oriented approach that places end-users at the fore-
front of the website development process. By offering the ability to refine LLM
outputs with subsequent input and generate multiple pages, we provide users
with a high level of control and customization options [20], thus creating web-
sites tailored to their specific needs and preferences.

3 Methodology

Fig. 1. The interactive website development process: (1) User provides input, (2)
Prompt manager processes input, (3) LLM generates HTML code, (4) HTML com-
piler checks for errors, and if any are detected, the process loops back to the prompt
manager for refinement.

In our approach, we utilize a technique that forces the LLM to follow a
specific response template, as outlined by the given prompt in Figure 2. The



Leveraging Large Language Models for End-User Website Generation 5

primary goal is to ensure that the generated code is structured and adheres to
the user’s specifications. The LLM is guided by a set of rules that dictate the
format of the generated responses. By leveraging this template-based approach,
end users can focus on their desired website functionality and design without
concerning themselves with the underlying code, as the requests and responses
are parsed in the specified format and rendered as HTML by the system.

When creating a new document, the LLM follows the response structure:
new, 〈document name〉, 〈code〉. In cases where a document requires modi-
fications, the LLM adheres to a response format that avoids outputting the
entire code, opting for a more efficient strategy: 〈document name〉; 〈add or

replace〉, 〈n1-n2 range of lines if replace, n1 if add〉,〈code〉;
... 〈add or replace〉, 〈n1-n2 range of lines if replace, n1 if add〉
; 〈code〉. This technique ensures that only necessary modifications are made,
preserving the original code and avoiding unnecessary API responses. The LLM
takes the user’s request as input, with the format request:〈request〉, and gen-
erates responses according to the aforementioned template. By adhering to the
specified format, the LLM efficiently modifies existing documents, only report-
ing the modification lines and modifications as needed, while leaving unmodified
parts of the document untouched.

Furthermore, the technique facilitates error detection and resolution. The
structured response format allows the parser to identify any errors in the gen-
erated code, providing the user with the necessary information to address these
issues. In cases where the LLM generates code with compiling errors, the system
can rectify the problem directly by prompting the LLM with the error and the
code to correct, as illustrated in Figure 1. This streamlined approach to error
detection and resolution saves time and effort, making the web development
process more accessible and efficient for non-technical users.

3.1 Iterative Refinement and Multiple Pages Generation

The methodology allows users to refine the output of the LLM with subsequent
input, providing them with greater flexibility and control over the generated
code. This iterative process ensures that the final website design closely matches
the users’ requirements and preferences. Users can provide feedback and request
changes in real-time, allowing them to actively shape the development process
and avoid time-consuming revisions after the website has been generated. More-
over, the approach enables the generation of multiple pages, further enhancing
the user experience and providing a more comprehensive website development
solution. Users can create interconnected pages with varying designs and con-
tent, allowing for the development of complex and feature-rich websites without
needing extensive technical expertise.

3.2 Variety of Design Options

The proposed approach offers users the possibility to choose between a variety of
design options in the generated documents. By providing diverse design alterna-



6 T. Calò and L. De Russis

Prompt:
You have been asked to create HTML and CSS code based on the user’s spec-
ifications. You can create multiple HTML documents, but only one CSS doc-
ument which will contain the page’s style. I will tell you the format of needed
responses, you must strictly follow the following response format, and you must
not output other words that are not contained in the formats.
If you need to create a new document, your response must be in the form of:
new, 〈document name〉, 〈code〉.
If you need to modify a document already generated in another response, you
must not output the whole code, even if the modification is large, you must use
the following format for your response:
〈document name〉; 〈add or replace〉, 〈n1-n2 range of lines if replace, n1 if
add〉,〈new line〉; ... 〈add or replace〉, 〈n1-n2 range of lines if replace, n1 if
add〉; 〈new line〉.
If no changes are required to a given document you must not output nothing.
You need to specify ¡add¿ if the line must be added to the specified line number
while ¡replace¿ if the line at the specified range must be replaced to accomplish
the modification.
Note that the user’s request will be inputted as “request:〈request〉”.
Also, if you need to modify an existing document, please only report the mod-
ification lines and modification in the format specified above, as efficiently as
possible. In order to not rewriting unmodified parts of the document.

Fig. 2. The prompt engineered to create and modify HTML and CSS documents based
on natural language specifications, with strict response formats for creating new doc-
uments and updating existing ones.

tives, users can explore different aesthetics and layouts for their website, ensuring
that the final product aligns with their desired look and feel. This feature adds
an extra layer of customization and adaptability to the website development
process, empowering users to create a unique and personalized online presence.

To facilitate the selection of design options, the methodology can incorporate
predefined templates or design components that the LLM can use as a starting
point. Users can then refine and customize these templates based on their pref-
erences, allowing them to quickly create visually appealing websites without
starting from scratch. The LLM can also learn from user feedback during the it-
erative refinement process, further improving the quality of the generated design
options and adapting to the users’ specific needs.

3.3 Efficient Prompting Strategy

The efficient prompting strategy involves asking the LLM only to respond with
the number of lines to modify and the specific modifications, instead of rewriting
the entire document. This approach enables the generation of code that benefits
from a larger context window, as fewer interactions and tokens are generated. As



Leveraging Large Language Models for End-User Website Generation 7

a result, the LLM can accommodate a more extended sequence of refinements,
leading to better model performance and improved user experience.

One of the core challenges in leveraging LLMs for website development is
managing the limitations imposed by the maximum token length of the model.
Other approaches often involve generating the entire codebase in one go, which
may result in exceeding the token limit. By using the efficient prompting strategy,
the methodology allows the model to focus on the most relevant portions of the
code, thus reducing the likelihood of exceeding the token limit. Minimizing the
number of generated tokens is essential for reducing the cost of API usage, as the
cost is directly related to the number of tokens generated. This not only makes
the methodology more affordable for end-users but also enables more extensive
usage of LLM resources for website development.

Additionally, a larger context window allows the model to process longer
sequences of text, enhancing its understanding of the user’s requirements and
improving its ability to generate accurate and contextually relevant code. Max-
imizing the context window also helps the LLM to maintain coherence across
the generated code, ensuring that the resulting website maintains a consistent
design and structure. As the LLM has access to more contextual information, it
can make better-informed decisions when generating code, improving the overall
quality of the generated website.

By generating fewer tokens, the proposed approach leads to cost savings
and better resource usage, as discussed in the previous sections. This not only
makes the methodology more affordable for end users but also enables more
extensive usage of LLM resources for website development. The efficient use
of API resources can also lead to faster response times and a more seamless
experience for users when interacting with the LLM.

3.4 Proof of Concept

To demonstrate the effectiveness of our approach, we have developed a proof-of-
concept implementation using GPT-4 [14], showcasing the technique’s practical
application. Figure 3 illustrates the sequential website development natural lan-
guage instructions with the GPT-4 model. The figure highlights the interaction
format, enabling readers to understand the structured responses and the method-
ology applied. Although the actual code in the responses is not shown, the re-
ported responses provide sufficient information to comprehend the template and
the format used in the GPT-4 interaction. This proof-of-concept serves as a tan-
gible example of how our approach can be employed in real-world scenarios to
create and refine websites using natural language specifications and the power
of LLMs, ultimately streamlining the web development process for end users.

4 Conclusion

The proposed methodology consists of an efficient prompting strategy for inter-
acting with external LLM APIs, which optimizes resource usage and enhances



8 T. Calò and L. De Russis

Fig. 3. Sequential website development process visualized in columns and rows:
Columns display the Request, Response, and Rendered Page; Rows showcase three
requests – the first and third for generating new pages, and the second for refining the
existing page. Note that the code in the response is not reported, however, the reported
responses should let readers understand the format used to interact with the LLM.

the user experience. By focusing on minimizing the number of generated tokens
and maximizing the context window, this approach enables cost savings, better
resource usage, improved model performance, and more refined control over the
generated code.

The provision of a variety of design options and iterative refinement further
adds to the customization and adaptability of the website development process.
By addressing the core challenges of LLM-based website development, such as
token limitations and contextual understanding the proposed methodology is
ready to be integrated with existing low-code/no-code tools to enable a wider
audience to benefit from the technology.

As a future work, the approach can be integrated with a low-code/no-code
platform to ascertain the efficacy and utility of the methodology, through user
studies. This integration can also streamline the development process by pro-
viding an interface for users to interact with the LLM, further enhancing the
overall user experience. The final goal will always be to democratize website
development and make it more accessible to users without technical expertise.

References

1. Alamin, M.A.A., Malakar, S., Uddin, G., Afroz, S., Haider, T., Iqbal, A.: An em-
pirical study of developer discussions on low-code software development challenges.
pp. 46–57 (05 2021). https://doi.org/10.1109/MSR52588.2021.00018



Leveraging Large Language Models for End-User Website Generation 9

2. Barricelli, B.R., Cassano, F., Fogli, D., Piccinno, A.: End-user develop-
ment, end-user programming and end-user software engineering: A system-
atic mapping study. Journal of Systems and Software 149, 101–137 (2019).
https://doi.org/https://doi.org/10.1016/j.jss.2018.11.041

3. Beltramelli, T.: Pix2code: Generating code from a graphical user interface
screenshot. In: Proceedings of the ACM SIGCHI Symposium on Engineer-
ing Interactive Computing Systems. EICS ’18, Association for Computing Ma-
chinery, New York, NY, USA (2018). https://doi.org/10.1145/3220134.3220135,
https://doi.org/10.1145/3220134.3220135

4. Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P.,
Neelakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-
Voss, A., Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler, D.,
Wu, J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M., Gray, S.,
Chess, B., Clark, J., Berner, C., McCandlish, S., Radford, A., Sutskever,
I., Amodei, D.: Language models are few-shot learners. In: Larochelle, H.,
Ranzato, M., Hadsell, R., Balcan, M., Lin, H. (eds.) Advances in Neural Infor-
mation Processing Systems. vol. 33, pp. 1877–1901. Curran Associates, Inc. (2020),
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-
Paper.pdf

5. Calò, T., De Russis, L.: Style-aware sketch-to-code conversion for the web. In:
Companion of the 2022 ACM SIGCHI Symposium on Engineering Interactive
Computing Systems. p. 44–47. EICS ’22 Companion, Association for Computing
Machinery, New York, NY, USA (2022). https://doi.org/10.1145/3531706.3536462,
https://doi.org/10.1145/3531706.3536462

6. Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto, H.P.d.O., Kaplan, J., Edwards,
H., Burda, Y., Joseph, N., Brockman, G., et al.: Evaluating large language models
trained on code. arXiv preprint arXiv:2107.03374 (2021)

7. Di Ruscio, D., Kolovos, D., Lara, J., Pierantonio, A., Tisi, M., Wimmer, M.: Low-
code development and model-driven engineering: Two sides of the same coin?
Software and Systems Modeling 21 (01 2022). https://doi.org/10.1007/s10270-
021-00970-2

8. Ghiani, G., Paternò, F., Spano, L.D., Pintori, G.: An environment for end-user
development of web mashups. International Journal of Human-Computer Studies
87, 38–64 (2016). https://doi.org/https://doi.org/10.1016/j.ijhcs.2015.10.008

9. Gomes, P.M., Brito, M.A.: Low-code development platforms: A descriptive study.
In: 2022 17th Iberian Conference on Information Systems and Technologies
(CISTI). pp. 1–4 (2022). https://doi.org/10.23919/CISTI54924.2022.9820354

10. Huang, F., Li, G., Zhou, X., Canny, J.F., Li, Y.: Creating user interface mock-
ups from high-level text descriptions with deep-learning models. arXiv preprint
arXiv:2110.07775 (2021)

11. Käss, S., Strahringer, S., Westner, M.: Drivers and inhibitors of low code develop-
ment platform adoption. In: 2022 IEEE 24th Conference on Business Informatics
(CBI). vol. 01, pp. 196–205 (2022). https://doi.org/10.1109/CBI54897.2022.00028

12. Luo, Y., Liang, P., Wang, C., Shahin, M., Zhan, J.: Characteristics and challenges
of low-code development: The practitioners’ perspective. In: Proceedings of the
15th ACM / IEEE International Symposium on Empirical Software Engineering
and Measurement (ESEM). ESEM ’21, Association for Computing Machinery, New
York, NY, USA (2021). https://doi.org/10.1145/3475716.3475782

13. Namoun, A., Daskalopoulou, A., Mehandjiev, N., Xun, Z.: Exploring mobile end
user development: Existing use and design factors. IEEE Transactions on Software
Engineering 42(10), 960–976 (2016). https://doi.org/10.1109/TSE.2016.2532873



10 T. Calò and L. De Russis

14. OpenAI: Gpt-4 technical report (2023)
15. Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C.L., Mishkin, P., Zhang,

C., Agarwal, S., Slama, K., Ray, A., et al.: Training language models to follow
instructions with human feedback. arXiv preprint arXiv:2203.02155 (2022)

16. Rode, J., Rosson, M.B., Qui˜nones, M.A.P.: End User Development of
Web Applications, pp. 161–182. Springer Netherlands, Dordrecht (2006).
https://doi.org/10.1007/1-4020-5386-X 8

17. Rosson, M.B., Sinha, H., Bhattacharya, M., Zhao, D.: Design plan-
ning in end-user web development. In: IEEE Symposium on Visual Lan-
guages and Human-Centric Computing (VL/HCC 2007). pp. 189–196 (2007).
https://doi.org/10.1109/VLHCC.2007.45

18. Sahay, A., Indamutsa, A., Di Ruscio, D., Pierantonio, A.: Supporting the under-
standing and comparison of low-code development platforms. In: 2020 46th Eu-
romicro Conference on Software Engineering and Advanced Applications (SEAA).
pp. 171–178 (2020). https://doi.org/10.1109/SEAA51224.2020.00036

19. Sales, J.E., Freitas, A., Oliveira, D., Koumpis, A., Handschuh, S.: Revisiting prin-
ciples and challenges in natural language programming. In: Virvou, M., Naka-
gawa, H., C. Jain, L. (eds.) Knowledge-Based Software Engineering: 2020. pp.
7–19. Springer International Publishing, Cham (2020)

20. Shneiderman, B.: Human-centered AI. Oxford University Press (2022)
21. Sinha, N., Karim, R., Gupta, M.: Simplifying web programming. In: Pro-

ceedings of the 8th India Software Engineering Conference. p. 80–89. ISEC
’15, Association for Computing Machinery, New York, NY, USA (2015).
https://doi.org/10.1145/2723742.2723750

22. Stocco, A.: How artificial intelligence can improve web development and testing. In:
Companion Proceedings of the 3rd International Conference on the Art, Science,
and Engineering of Programming. Programming ’19, Association for Computing
Machinery, New York, NY, USA (2019). https://doi.org/10.1145/3328433.3328447

23. Symmonds, N.: Visual Web Developer (01 2006). https://doi.org/10.1007/978-1-
4302-0180-9 5

24. Tou, F.N., Williams, M.D., Fikes, R., Henderson, A., Malone, T.: Rabbit: An
intelligent database assistant. In: Proceedings of the Second AAAI Conference on
Artificial Intelligence. p. 314–318. AAAI’82, AAAI Press (1982)

25. Tzafilkou, K., Protogeros, N.: Diagnosing user perception and acceptance using
eye tracking in web-based end-user development. Computers in Human Behavior
72, 23–37 (2017). https://doi.org/https://doi.org/10.1016/j.chb.2017.02.035

26. Waszkowski, R.: Low-code platform for automating business pro-
cesses in manufacturing. IFAC-PapersOnLine 52(10), 376–381 (2019).
https://doi.org/https://doi.org/10.1016/j.ifacol.2019.10.060, 13th IFACWorkshop
on Intelligent Manufacturing Systems IMS 2019

27. Wong, J.: Marmite: Towards end-user programming for the web. In: IEEE Sympo-
sium on Visual Languages and Human-Centric Computing (VL/HCC 2007). pp.
270–271 (2007). https://doi.org/10.1109/VLHCC.2007.40

28. Woo, M.: The rise of no/low code software development—no experience needed?
Engineering 6 (07 2020). https://doi.org/10.1016/j.eng.2020.07.007

29. Wu, C., Yin, S., Qi, W., Wang, X., Tang, Z., Duan, N.: Visual chat-
gpt: Talking, drawing and editing with visual foundation models (2023).
https://doi.org/10.48550/ARXIV.2303.04671, https://arxiv.org/abs/2303.04671

30. Xu, F.F., Vasilescu, B., Neubig, G.: In-ide code generation from natural language:
Promise and challenges. ACM Trans. Softw. Eng. Methodol. 31(2) (mar 2022).
https://doi.org/10.1145/3487569


